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Paradoxes	 have	 been	 around	 from	 the	 most	

ancient	of	times,	and	yet	continue	to	be	present	

in	 our	 times,	 baffling	 and	 amusing	 us.	 At	 the	

same	 time,	 they	 often	 point	 to	 fundamental	

truths	of	 life.	 (Perhaps	 the	most	hard‐hitting	of	

these	is	this	one:	All	men	are	equal,	but	some	are	

more	 equal	 than	 others.)	 You	 surely	 will	 have	

your	own	favourites.

There	 are	 paradoxes	 of	 different	 kinds.	 Some	 lie	 strictly	 within	 the	 contours	 of	

mathematics.	 Everyone	 has	 seen	 the	 'proof'	 that	 1=2,	 or	 that	 every	 triangle	 is	

equilateral.	 Though	 these	 are	 labelled	 as	 paradoxes,	 they	 typically	 derive	 from	a	

mathematically	illegal	step	or	an	incorrectly	drawn	diagram.	Precisely	because	of	

this,	 they	have	great	 value	pedagogically.	Then	 there	are	paradoxes	 in	which	 the	

conclusion	 of	 a	 carefully	 constructed	 line	 of	 reasoning	 seems	 absurd,	 but	 this	 is	

only	 because	 our	 common	 sense	 is	 unable	 to	 accept	 the	 conclusion.	

Mathematically,	there	is	nothing	paradoxical	about	the	conclusion.	A	well‐known	

such	Paradox	is	Zeno's	Paradox	which	derives	from	the	notion	that	if	you	add	an	

infinite	number	of	quantities,	the	sum	must	be	

infinite	 (that's	what	 common	 sense	 tells	 us).	

In	more	 recent	 times,	we	 have	 the	 Banach‐

Tarski	 Paradox,	 in	 which	 from	 a	 given	

object,	 we	 produce	 two	 copies	 of	 that	

same	 object	 by	 dividing	 it	 into	 a	 large	

number	of	pieces	and	rearranging	the	pieces,	and	

the	 paradoxes	 concerning	 Infinity	 which	 derive	

from	 the	work	 of	 Cantor.	Note	 the	 feature	 that	 all	

these	paradoxes	share:	the	notion	of	Infinity.	

And	then	there	are	paradoxes	which	seem	genuinely	impossible	to	resolve.	Such	is	

certainly	 the	 case	with	paradoxes	 involving	 self‐reference.	Well‐known	examples	

are	 the	Barber's	 Paradox,	 the	Russell	 Paradox	 in	 set	 theory,	 and	 the	Epimenides	

Paradox.	The	underlying	logic	here	is	of	an	utterly	simple	nature,	yet	the	conclusion	

frustrates	us.	Other	such	paradoxes	which	we	find	similarly	 frustrating	are	those	

involving	time	travel.	(We	do	not	possess	the	technology	for	time	travel	today,	but	

imagine	that	human	beings	of	the	future	–	say	a	century	from	now	–	master	such	

technology.	Would	they	be	able	to	move	backwards	in	time,	and	come	and	visit	us	in	

our	time	and	teach	us	the	technology	for	time	travel?	If	so,	it	would	lead	to	a	most	

delicious	paradox!)	

All	in	all,	paradoxes	offer	us	a	most	

wonderful	 subject.	 Let	 us	 treat	

them	 as	 gifts	 from	 the	 gods	 and	

delight	in	their	study.

THE	CHARM	OF	PARADOXES

There was a young lady of Crewe
Whose limericks stopped at line two.



'A	popular	mathematics	magazine'	seems	to	be	a	paradoxical	phrase,	but	here	

is	 our	 tenth	 issue	 and	with	 a	 growing	 subscriber	 list,	we	 seem	 to	 be	 both	

popular	and	mathematical!	Aptly	enough,	Punya	Misra	and	Gaurav	Bhatnagar	

wrap	up	their	two	part	series	on	Paradoxes;	selected	visuals	from	these	are	

featured	 on	 the	 cover	 too.	 Part	 III	 of	Morley's	Miracle	 by	 V.G.	 Tikekar	 and	

some	stunning	insights	into	the	appearances	of	the	3‐4‐5	triangle	by	Shailesh	

Shirali	complete	the	Features	section.	

In	 the	 ClassRoom	 is	 packed	 with	 goodies	 for	 the	 practicing	 teacher.	 Majid	

Sheikh	 describes	 some	 Tests	 for	 Divisibility	 by	 Powers	 of	 2	 and	 CoMaC	

pitches	in	with	an	article	on	Prime	Generation	and	an	explanation	for	one	of	

the	 patterns	 reported	 in	 a	 post	 from	 'AtRiUM'	 –	 our	 FaceBook	 page.	 Swati	

Sircar	 and	 Sneha	Titus	 continue	 the	 Low	Floor,	High	Ceiling	 activity	 series	

and	 Swati	 Sircar	 also	 provides	 an	 addendum	 to	 the	 Pullout	 on	 Division.	

Shailesh	Shirali	 pulls	 a	 family	of	 circles	out	of	his	mathematician's	hat	 and	

also	continues	the	series	on	'How	To	Prove	It'.

Paper	Folding	and	Dynamic	Geometry	software	have	blended	seamlessly	 in	

Tech	Space	where	Swati	Sircar	begins	a	series	on	Conic	sections.	This	section	

has	a	bonus	this	time	–	a	GeoGebra	 investigation	of	the	Rectangle	Problem.	

It's	time	to	say	Open	Sesame	at	your	math	lab	sessions!

Prithwijit	De,	R.	Athmaraman	and	CoMaC	give	us	more	 fodder	 for	Problem	

Corner.	 	This	time	we	feature	R.	Ramanujam's	review	of	the	book	by	George	

Joseph	Gheverghese,	'The	Crest	of	the	Peacock'.		Padmapriya	Shirali	wraps	up	

the	issue	with	a	pullout	on	Measurement.

In	the	last	issue,	we	had	featured	a	challenge	problem	for	readers	and	we	are	

delighted	to	publish	a	solution	sent	in	by	reader	Tejash	Patel.	A	question	on	

how	 we	 teach	 the	 rule	 of	 'negative	 times	 negative	 is	 positive'	 which	 was	

thrown	 open	 to	 readers	 also	 sparked	 off	 several	 responses.	 This	 issue	

publishes	an	abbreviated	version	of	some	of	these.	

It's	been	an	interesting	three	years	and	we	appreciate	this	journey	with	you,	

our	loyal	readers!

—	Sneha	Titus

Associate	Editor

From	the	
Editor’s	Desk	.	.	.
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Lurking within any triangle …

Morleý s
Miracle – Part III

…is an equilateral triangle

This article concludes the three-part series begun in the
July 2014 issue, wherein we study one of the most celebrated
theorems of Euclidean geometry: Morley’s Miracle. In this
segment we examine an unusual proof due to
Professor John H Conway.

InPart I of this article we narrated the history of this theorem
and discussed a pure geometry proof (M. T. Naraniengar’s).
We remarked that the proof startswith an equilateral

triangle and then proceeds to construct a con�iguration similar
to the original one; thus it reaches the desired conclusion.

A

B C

P

Q

R

Figure 1. Morleý s theorem: The angle trisectors closest to each side
intersect at points which are the vertices of an equilateral triangle

Keywords: Angle trisector, equilateral triangle, congruent, sine rule,
backward proof
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Figure 4.

Let the candidate triangle 𝑃𝑃𝑃𝑃�𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� be drawn as
shown, with its prescribed angles (see Figure 4).
Next, let rays 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 and 𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉 be drawn from 𝑃𝑃𝑃𝑃� such
that ∠𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉 𝑉𝑉 𝑉𝑉𝑉𝑉� and ∠𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 𝑉𝑉 𝑈𝑈𝑈𝑈�. Let these
rays intersect the side𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� at 𝑈𝑈𝑈𝑈 and 𝑉𝑉𝑉𝑉
respectively. Then ∠𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀� 𝑉𝑉 180 − 𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 � 𝑉𝑉 𝑥𝑥𝑥𝑥�
and ∠𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁� 𝑉𝑉 180 − 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉𝑉 � 𝑉𝑉 𝑥𝑥𝑥𝑥�. Note that this
makes △𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈𝑉𝑉𝑉𝑉 isosceles, with 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 𝑉𝑉 𝑉𝑉𝑉𝑉�𝑉𝑉𝑉𝑉. Now we
�ix the scale of the triangle so that 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 and 𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉
have the same length as the side of the equilateral
triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. This is clearly possible.
With this in place, we consider △𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and
△𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉. They are clearly congruent to each other
(‘ASA congruence’), as they have the same sets of
angles, and the sides opposite angle 𝑈𝑈𝑈𝑈 have equal
length; hence𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 𝑃𝑃 𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�. In just the sameway we
have𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃 𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃� (consider △𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and △𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈).
Hence when we insert △𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑁𝑁𝑁𝑁� into angle𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
the �it is exact:𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃� lines up with𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃; 𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃� lines
up with 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃; and𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� lines up with𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁.
The same kinds of actions can be repeated on the
other two sides of the triangle: we insert into
angle 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 and angle 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 triangles of suitable
size, which then match up exactly with the
spaces occupied by the angles. (See Figure 4. We
have not named the triangles to avoid a visual
clutter.) With these three triangles thus in place,
the seven triangles together make up triangle
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, whose angles at 𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀 and 𝑁𝑁𝑁𝑁 are 3𝑥𝑥𝑥𝑥, 3𝑈𝑈𝑈𝑈 and
3𝑉𝑉𝑉𝑉. This means that △𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is similar to the given
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (they have the same sets of angles).
Moreover, the lines 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 trisect ∠𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; the

lines𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 and𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 trisect ∠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; and the lines 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃
and 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 trisect ∠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. So the trisectors of the
angles of △𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 give rise to an equilateral
triangle, and it follows that the same must be
true of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, just as Morley’s theorem asserts.
This proves the theorem.

Another presentation of Conway’s proof
Conway’s proof can be presented in a different
way. See Figure 5. Consider △𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. Since
∠𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ��, it follows that
∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃 ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁   𝑃𝑃 𝑉𝑉𝑉𝑉.
Now we consider the ratio 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀 𝑃𝑃 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 in △𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. We
compute the ratio via △𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and △𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃:

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀
𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 𝑉𝑉 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉 sin 𝑥𝑥𝑥𝑥�𝑃𝑃 sin 𝑈𝑈𝑈𝑈
sin 𝑥𝑥𝑥𝑥�𝑃𝑃 sin 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉 sin 𝑉𝑉𝑉𝑉

sin 𝑈𝑈𝑈𝑈 .

It follows that
sin∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
sin∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉 sin 𝑉𝑉𝑉𝑉

sin 𝑈𝑈𝑈𝑈 .

We also know that ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝑃𝑃 𝑈𝑈𝑈𝑈. From
these relations we may conclude that

∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑃𝑃 ∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

(This may seem intuitively clear but it needs
justi�ication. Let ∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝑃𝑃𝑃𝑃, ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑃𝑃𝑃𝑃, and let
𝑤𝑤𝑤𝑤 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉  𝑉𝑉𝑉𝑉. Then𝑤𝑤𝑤𝑤 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   too, and
sin 𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . We now have:

sin 𝑃𝑃𝑃𝑃
sin 𝑃𝑃𝑃𝑃 𝑉𝑉 sin 𝑈𝑈𝑈𝑈

sin 𝑉𝑉𝑉𝑉 𝑃𝑃
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We added that many of the pure geometry proofs
known today proceed in just this way.
Now, in the concluding piece of this three-part
series, we give another such proof; this one has
sprung from the fertile mind of Professor John
Conway [2]. (See https://en.wikipedia.org/wiki/
John_Horton_Conway for information on this
remarkable individual.) It may well be the most
unusual of all the proofs of Morley’s theorem.
(Actually, our proof is a slight adaptation of
Conway’s proof.)
Given △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, let angles 𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 be de�ined by
𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥, 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 (see Figure 2). We
shall assume henceforth that all angles are
measured in degrees, so that 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝐴𝐴 𝑥𝑥𝑥𝑥.
Conway starts by introducing the following
operation for angles. Let 𝜃𝜃𝜃𝜃 be any angle
(measured in degrees, of course). Then he de�ines
𝜃𝜃𝜃𝜃� to be the angle 𝜃𝜃𝜃𝜃 𝑥𝑥 𝑥𝑥𝑥𝑥 and 𝜃𝜃𝜃𝜃�� to be the angle
𝜃𝜃𝜃𝜃� 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝜃𝜃𝜃𝜃 𝑥𝑥 𝜃𝜃𝜃𝜃𝑥𝑥. So a triangle exists with

angles of 𝑥𝑥�𝑥𝑥 𝑥𝑥�𝑥𝑥 𝑥𝑥�: it is an equilateral triangle. In
the same way we can assert that:
• A triangle exists with angles 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�; for,
𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥� 𝑥𝑥 𝑥𝑥𝑥𝑥� 𝐴𝐴 𝐴𝐴8𝑥𝑥.

Similarly, a triangle exists with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥�,
and a triangle exists with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥.

• A triangle exists with angles 𝑥𝑥𝑥𝑥��, 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥; for,
𝑥𝑥𝑥𝑥�� 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 𝑥𝑥.

Similarly, a triangle exists with angles 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥��, 𝑥𝑥𝑥𝑥,
and a triangle exists with angles 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥��.

Conway starts by constructing an equilateral
triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 with side 𝜃𝜃 unit (Figure 3). Then he
constructs:
• On side 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 as base:△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥
at vertices 𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃 respectively;

• On side 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 as base: △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄 with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥
at vertices 𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃, 𝑄𝑄𝑄𝑄 respectively;

• On side 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 as base:△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥
at vertices 𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃,𝑅𝑅𝑅𝑅 respectively.

Each of these is a legitimate triangle, in the sense
that the prescribed angles add up to 𝜃𝜃8𝑥𝑥. Each
one is uniquely �ixed both in shape and si�e.
The computation in Figure 3 shows that
∠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  ��. This fact allows us to insert into
angle𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 a triangle 𝑃𝑃𝑃𝑃�𝑅𝑅𝑅𝑅�𝑃𝑃𝑃𝑃� with angles 𝑥𝑥𝑥𝑥��, 𝑥𝑥𝑥𝑥
and 𝑥𝑥𝑥𝑥. (We have noted earlier that there does exist
a triangle with these angles, as the angles do add
up to 𝜃𝜃8𝑥𝑥.) �ut we need to �ix the si�e of the
triangle �irst. We do this as follows.
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Let the candidate triangle 𝑃𝑃𝑃𝑃�𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� be drawn as
shown, with its prescribed angles (see Figure 4).
Next, let rays 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 and 𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉 be drawn from 𝑃𝑃𝑃𝑃� such
that ∠𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉 𝑉𝑉 𝑉𝑉𝑉𝑉� and ∠𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 𝑉𝑉 𝑈𝑈𝑈𝑈�. Let these
rays intersect the side𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� at 𝑈𝑈𝑈𝑈 and 𝑉𝑉𝑉𝑉
respectively. Then ∠𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀� 𝑉𝑉 180 − 𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 � 𝑉𝑉 𝑥𝑥𝑥𝑥�
and ∠𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁� 𝑉𝑉 180 − 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉𝑉 � 𝑉𝑉 𝑥𝑥𝑥𝑥�. Note that this
makes △𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈𝑉𝑉𝑉𝑉 isosceles, with 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 𝑉𝑉 𝑉𝑉𝑉𝑉�𝑉𝑉𝑉𝑉. Now we
�ix the scale of the triangle so that 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 and 𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉
have the same length as the side of the equilateral
triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. This is clearly possible.
With this in place, we consider △𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and
△𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉. They are clearly congruent to each other
(‘ASA congruence’), as they have the same sets of
angles, and the sides opposite angle 𝑈𝑈𝑈𝑈 have equal
length; hence𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 𝑃𝑃 𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�. In just the sameway we
have𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃 𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃� (consider △𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and △𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈).
Hence when we insert △𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑁𝑁𝑁𝑁� into angle𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
the �it is exact:𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃� lines up with𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃; 𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃� lines
up with 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃; and𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� lines up with𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁.
The same kinds of actions can be repeated on the
other two sides of the triangle: we insert into
angle 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 and angle 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 triangles of suitable
size, which then match up exactly with the
spaces occupied by the angles. (See Figure 4. We
have not named the triangles to avoid a visual
clutter.) With these three triangles thus in place,
the seven triangles together make up triangle
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, whose angles at 𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀 and 𝑁𝑁𝑁𝑁 are 3𝑥𝑥𝑥𝑥, 3𝑈𝑈𝑈𝑈 and
3𝑉𝑉𝑉𝑉. This means that △𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is similar to the given
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (they have the same sets of angles).
Moreover, the lines 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 trisect ∠𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; the

lines𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 and𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 trisect ∠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; and the lines 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃
and 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 trisect ∠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. So the trisectors of the
angles of △𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 give rise to an equilateral
triangle, and it follows that the same must be
true of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, just as Morley’s theorem asserts.
This proves the theorem.

Another presentation of Conway’s proof
Conway’s proof can be presented in a different
way. See Figure 5. Consider △𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. Since
∠𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ��, it follows that
∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃 ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁   𝑃𝑃 𝑉𝑉𝑉𝑉.
Now we consider the ratio 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀 𝑃𝑃 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 in △𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. We
compute the ratio via △𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and △𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃:

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀
𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 𝑉𝑉 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉 sin 𝑥𝑥𝑥𝑥�𝑃𝑃 sin 𝑈𝑈𝑈𝑈
sin 𝑥𝑥𝑥𝑥�𝑃𝑃 sin 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉 sin 𝑉𝑉𝑉𝑉

sin 𝑈𝑈𝑈𝑈 .

It follows that
sin∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
sin∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉 sin 𝑉𝑉𝑉𝑉

sin 𝑈𝑈𝑈𝑈 .

We also know that ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝑃𝑃 𝑈𝑈𝑈𝑈. From
these relations we may conclude that

∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑃𝑃 ∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

(This may seem intuitively clear but it needs
justi�ication. Let ∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝑃𝑃𝑃𝑃, ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑃𝑃𝑃𝑃, and let
𝑤𝑤𝑤𝑤 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉  𝑉𝑉𝑉𝑉. Then𝑤𝑤𝑤𝑤 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   too, and
sin 𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . We now have:

sin 𝑃𝑃𝑃𝑃
sin 𝑃𝑃𝑃𝑃 𝑉𝑉 sin 𝑈𝑈𝑈𝑈

sin 𝑉𝑉𝑉𝑉 𝑃𝑃
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This is not the first sentence of this article.

The above sentence can be both true and false. It is clearly the first 
sentence of this article. So it is false, because it says it is not the first 
sentence! But because this is part 2 of our article on Paradoxes, if we 
regard both parts as one article, it is true! We leave it to you to resolve 
this paradox.

In the first part of this two-part exposition on paradoxes in 
mathematics, we introduced the idea of self-reference, the nature of 
mathematical truth, the problems with circular proofs and explored 
Zeno’s Paradox. In this part we delve deeper into the challenges of 
determining the 'truth value' of pathological self-referential statements, 
visual paradoxes and more.

Self - Reference and Russell’s Paradox
There is a class of paradoxes that arise from objects referring to 
themselves. The classic example is Epimenides Paradox (also called the 
Liar Paradox). Epimenides was a Cretan, who famously remarked  
“All Cretans are liars.” So did Epimenides tell the truth? If he did, then 
he must be a liar, since he is a Cretan, and so he must be lying! If he 
was lying, then again it is not the case that all Cretans are liars, and so 
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Keywords: Paradox, Circular proof, Zeno's paradoxes, Russell's paradox, 
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∴ sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤
sin 𝑤𝑤𝑤𝑤 = sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤

sin 𝑤𝑤𝑤𝑤 ,

∴ sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 sin 𝑤𝑤𝑤𝑤 = sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 sin 𝑤𝑤𝑤𝑤,

∴ (sin𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤s 𝑤𝑤𝑤𝑤 𝑤𝑤 sin 𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤s𝑤𝑤𝑤𝑤𝑤𝑤 sin 𝑤𝑤𝑤𝑤 =
(sin𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤s 𝑤𝑤𝑤𝑤 𝑤𝑤 sin 𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤s𝑤𝑤𝑤𝑤𝑤𝑤 sin 𝑤𝑤𝑤𝑤,

∴ 𝑤𝑤𝑤𝑤s 𝑤𝑤𝑤𝑤 𝑤𝑤𝑤 𝑤𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤 𝑤𝑤𝑤 𝑤𝑤𝑤𝑤
(since sin𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤),

∴ sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤

which yields 𝑤𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤 and hence 𝑢𝑢𝑢𝑢 = 𝑢𝑢𝑢𝑢 as well. The
reader could look for different ways of arguing
this out.)
In �ust the same way we �ind that ∠𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑤𝑤𝑤𝑤,
∠𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑄𝑄𝑄𝑄, ∠𝑅𝑅𝑅𝑅𝑄𝑄𝑄𝑄𝑅𝑅𝑅𝑅 = 𝑄𝑄𝑄𝑄, ∠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑄𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄 . We conclude,
as earlier, that △𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 is similar to △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 trisect ∠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅;𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 trisect ∠𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄; and
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 trisect ∠𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄. So the trisectors of the
angles of △𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 give rise to an equilateral
triangle, and the same must be true of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. This
proves Morley’s theorem.
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The above sentence can be both true and false. It is clearly the first 
sentence of this article. So it is false, because it says it is not the first 
sentence! But because this is part 2 of our article on Paradoxes, if we 
regard both parts as one article, it is true! We leave it to you to resolve 
this paradox.

In the first part of this two-part exposition on paradoxes in 
mathematics, we introduced the idea of self-reference, the nature of 
mathematical truth, the problems with circular proofs and explored 
Zeno’s Paradox. In this part we delve deeper into the challenges of 
determining the 'truth value' of pathological self-referential statements, 
visual paradoxes and more.
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There is a class of paradoxes that arise from objects referring to 
themselves. The classic example is Epimenides Paradox (also called the 
Liar Paradox). Epimenides was a Cretan, who famously remarked  
“All Cretans are liars.” So did Epimenides tell the truth? If he did, then 
he must be a liar, since he is a Cretan, and so he must be lying! If he 
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Figure 4 shows an ambigram for asymmetry, 
but it is symmetric. So in some sense, this design 
is a visual contradiction! But it is not a very 
elegant solution − which in some strange way is 
appropriate. 

Recall the idea of self-similarity from our earlier 
column, where a part of a figure is similar to (or 
a scaled-down version of) the original. Here is an 
ambigram for similarity which is made up of small 
pieces of self (Figure 5). Should we consider this 
to be self-similarity?

Another set of visual paradoxes have to do with 
the problems that arise when one attempts 
to represent a world of 3 dimensions in 2 
dimensions – such as in a painting or drawing. 
The Dutch artist M.C. Escher was the master at 
this. His amazing paintings often explore the 
paradoxes and impossible figures that can be 
created through painting. For instance, he took 
the mathematician and physicist Roger Penrose’s 
image of an impossible triangle and based some of 
his work on it (Figure 6).

Another interesting example is the sentence: “This 
sentence has two ewrrors.” Does this indeed have 
two errors? Is the error in counting errors itself 
an error? If that is the case, then does it have two 
errors or just one? 

What is intriguing about the examples above is 
that they somehow arise because the sentences 
refer to themselves. The paradox was summarized 
in the mathematical context by Russell, and has 
come to be known as Russell’s paradox. Russell’s 
paradox concerns sets. Consider a set R of all 
sets that do not contain themselves. Then Russell 
asked, does this set R contain itself? If it does 
contain itself, then it is not a member of R. But if it 
is not a member of R, then it does contain itself.

Russell’s Paradox was resolved by banning such 
sets from mathematics. Recall that one thinks of a 
set as a well-defined collection of objects. Here by 
well-defined we mean that given an element a and 
a set A, we should be able to determine whether 
a belongs to A or not. So Russell’s paradox shows 
that a set of all sets that do not contain themselves 
is not well-defined. By creating a distinction 
between an element and a set, such situations do 
not arise. You could have sets whose members are 
other sets, but an element of a set cannot be the 
set itself. Thus, in some sense, self-reference is not 
allowed in Set Theory!

Visual contradictions
Next, we turn to graphic contradictions, where 
we use ambigrams to create paradoxical 
representations. 

Figure 4: A somewhat inelegant design that captures 
a visual paradox − the word “asymmetry” written in a 

symmetric manner.

Figure 5: Here is an ambigram for Similarity which is made up of small pieces of Self. 
Should we consider this to be self-similarity?
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A variant of this (that does not employ self-
reference) is also known as the Card paradox or 
Jourdain’s paradox (named after the person who 
developed it). In this version, there is a card with 
statements printed on both sides. The front says, 
“The statement on the other side of this card is 
TRUE,” while the back says, “The statement on the 
other side of this card is FALSE.” Think through it, 
and you will find that trying to assign a truth value 
to either of them leads to a paradox!

Figure 3 combines the liar’s paradox and 
Jourdain’s paradox (in its new ambigram one-
sided version) into one design. 

he must be telling the truth, and that cannot be! 
Figure 1 is an ambiguous design that can be read 
as both “true” and “false.”

The artwork of M.C. Escher (such as his famous 
illustration that shows two hands painting each 
other) provides many visual examples of such 
phenomena. Another older analogy or picture is 
that of the ouroboros—an image of a snake eating 
its own tail (how’s that for a vicious circle!). An 
ambigram of ouroboros was featured in our first 
article on paradoxes. 

Here is another variation of the Liar Paradox. 
Consider the following two sentences that differ 
by just one word. 

 This sentence is true.

 This sentence is false. 

The first is somewhat inconsequential – apart 
from the apparent novelty of a sentence speaking 
to its own truth value. 

The second, however, is pathological. The truth 
and falsity of such pathologically self-referential 
statements is hard to pin down. Trying to assign 
a truth value to it leads to a contradiction, just 
like in the Liar Paradox. Figure 2 is a rotational 
ambigram that reads “true” one way and “false” 
when rotated 180 degrees. 

Figure 1. An ambiguous design that  
can be read as both “true” and “false.”

Figure 2: Rotational ambigram that reads “False”  
one way and “True” the other. (This design was 

inspired by a design by John Longdon.)

Figure 3: Two paradoxes in one. Inside the circle is the 
ambigram for the pair of sentences “This sentence 
is True/This sentence is False”. The outer circle is 

an original design for the Jourdain two-sided-card 
paradox, which can, due to the magic of ambigrams, 

be reduced to being printed on just one side!
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Figure 4 shows an ambigram for asymmetry, 
but it is symmetric. So in some sense, this design 
is a visual contradiction! But it is not a very 
elegant solution − which in some strange way is 
appropriate. 

Recall the idea of self-similarity from our earlier 
column, where a part of a figure is similar to (or 
a scaled-down version of) the original. Here is an 
ambigram for similarity which is made up of small 
pieces of self (Figure 5). Should we consider this 
to be self-similarity?

Another set of visual paradoxes have to do with 
the problems that arise when one attempts 
to represent a world of 3 dimensions in 2 
dimensions – such as in a painting or drawing. 
The Dutch artist M.C. Escher was the master at 
this. His amazing paintings often explore the 
paradoxes and impossible figures that can be 
created through painting. For instance, he took 
the mathematician and physicist Roger Penrose’s 
image of an impossible triangle and based some of 
his work on it (Figure 6).

Another interesting example is the sentence: “This 
sentence has two ewrrors.” Does this indeed have 
two errors? Is the error in counting errors itself 
an error? If that is the case, then does it have two 
errors or just one? 

What is intriguing about the examples above is 
that they somehow arise because the sentences 
refer to themselves. The paradox was summarized 
in the mathematical context by Russell, and has 
come to be known as Russell’s paradox. Russell’s 
paradox concerns sets. Consider a set R of all 
sets that do not contain themselves. Then Russell 
asked, does this set R contain itself? If it does 
contain itself, then it is not a member of R. But if it 
is not a member of R, then it does contain itself.

Russell’s Paradox was resolved by banning such 
sets from mathematics. Recall that one thinks of a 
set as a well-defined collection of objects. Here by 
well-defined we mean that given an element a and 
a set A, we should be able to determine whether 
a belongs to A or not. So Russell’s paradox shows 
that a set of all sets that do not contain themselves 
is not well-defined. By creating a distinction 
between an element and a set, such situations do 
not arise. You could have sets whose members are 
other sets, but an element of a set cannot be the 
set itself. Thus, in some sense, self-reference is not 
allowed in Set Theory!

Visual contradictions
Next, we turn to graphic contradictions, where 
we use ambigrams to create paradoxical 
representations. 

Figure 4: A somewhat inelegant design that captures 
a visual paradox − the word “asymmetry” written in a 

symmetric manner.

Figure 5: Here is an ambigram for Similarity which is made up of small pieces of Self. 
Should we consider this to be self-similarity?
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These images oscillate between two opposite 
incommensurable interpretations, somewhat like 
the liar paradoxes we had described earlier. Figure 
10 is another ambiguous shape that can be read 
two ways! What is cool about that design is that 
each of these shapes is built from tiny squares that 
read the word “cube.”

These representations fool our minds to see things 
in ways that are strange or impossible. These are 
visual paradoxes, or illusions, as reflected in the 
design in Figure 11, which is the word “illusions” 
represented using an impossible font (akin to the 
Penrose Triangle or Necker Cube).

Figure 11: An impossible typeface based on the Necker Cube and 
Penrose Triangle. Spelling the word “Illusions.”

Figure 10: The impossible cube? In this design the word “cube” is used to 
create a series of shapes that oscillate between one reading and the other. 

Mathematical Truth and the Real World
One of the most fundamental puzzles of the 
philosophy of mathematics has to do with the fact 
that though mathematical truths appear to have a 
compelling inevitability (from axiom to theorem 
via proof) and find great applicability in the world, 
there is little we know of why this is the case. 
The physicist Wigner called it the “unreasonable 
effectiveness of mathematics” to explain, 
understand and predict the phenomena in the real 
world. The question is how something that exists 
in some kind of an “ideal” world can connect to 
and make sense in the “real” world we live in. 
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Another famous impossible object is the 
“impossible cube.” The impossible cube builds 
on the manner in which simple line drawings of 
3D shapes can be quite ambiguous. For instance, 
see the wire-frame cube below (also known as 
the Necker Cube). This image usually oscillates 
between two different orientations. For instance, 
in Figure 9, is the person shown sitting on the 
cube or magically stuck to the ceiling inside it?

As homage to M.C. Escher, we present below 
(Figure 7) a rotational ambigram of his name 
written using an impossible font!

As it turns out, the Penrose Triangle is also 
connected to another famous geometrical shape, 
the Möbius strip. A Möbius strip has many 
interesting properties, one of which is that it has 
only one side and one edge (Figure 8).

Figure 7: Rotationally symmetric ambigram for M.C. 
Escher written using an impossible alphabet style.

Puzzle: What is the relationship 
between a Penrose Triangle and a 
Möbius strip?

Figure 8. An unending reading of the word Möbius 
irrespective of how you are holding the paper!

Figure 6. A Penrose Triangle – a visual 
representation of an object that cannot 

exist in the real world.

Figure 9. The Necker Cube – and how it can lead to two different 3D 
interpretations and through that to an impossible or paradoxical object.
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These images oscillate between two opposite 
incommensurable interpretations, somewhat like 
the liar paradoxes we had described earlier. Figure 
10 is another ambiguous shape that can be read 
two ways! What is cool about that design is that 
each of these shapes is built from tiny squares that 
read the word “cube.”

These representations fool our minds to see things 
in ways that are strange or impossible. These are 
visual paradoxes, or illusions, as reflected in the 
design in Figure 11, which is the word “illusions” 
represented using an impossible font (akin to the 
Penrose Triangle or Necker Cube).

Figure 11: An impossible typeface based on the Necker Cube and 
Penrose Triangle. Spelling the word “Illusions.”

Figure 10: The impossible cube? In this design the word “cube” is used to 
create a series of shapes that oscillate between one reading and the other. 

Mathematical Truth and the Real World
One of the most fundamental puzzles of the 
philosophy of mathematics has to do with the fact 
that though mathematical truths appear to have a 
compelling inevitability (from axiom to theorem 
via proof) and find great applicability in the world, 
there is little we know of why this is the case. 
The physicist Wigner called it the “unreasonable 
effectiveness of mathematics” to explain, 
understand and predict the phenomena in the real 
world. The question is how something that exists 
in some kind of an “ideal” world can connect to 
and make sense in the “real” world we live in. 
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Figure 12 maps the word “ideal” to “real.” Is the 
ideal real – and real just a mere reflection of the 
ideal? Or vice versa?
Clearly this is not an issue that will be resolved 
anytime soon – but it is intriguing to think about. 
So with that, we bid adieu, but before we depart 
we would like to bring you the following self-
serving public announcement. 

This is the last sentence of the article. No this is. 
This.Figure 12: The Ideal-Real ambigram, 

representing the paradoxical thought that the 
Real world often appears to be a reflection of 

the Ideal mathematical theory!
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PUNYA MISHRA, when not pondering visual paradoxes, is professor of educational technology at Michigan 
State University. GAURAV BHATNAGAR, when not reflecting on his own self, is Senior Vice-President at 
Educomp Solutions Ltd. They have known each other since they were students in high-school. 

Over the years, they have shared their love of art, mathematics, bad jokes, puns, nonsense verse and other 
forms of deep-play with all and sundry. Their talents, however, have never truly been appreciated by their 
family and friends. 

Each of the ambigrams presented in this article is an original design created by Punya with mathematical 
input from Gaurav (except when mentioned otherwise). Please contact Punya if you want to use any of 
these designs in your own work. 

To you, dear reader, we have a simple request. Do share your thoughts, comments, math poems, or any 
bad jokes you have made with the authors. Punya can be reached at punya@msu.edu or through his 
website at http://punyamishra.com and Gaurav can be reached at bhatnagarg@gmail.com and his website 
at http://gbhatnagar.com/.

Answer to Puzzle:
The Möbius Strip and the Penrose Triangle have an interesting relationship to each other. If you 
trace a line around the Penrose Triangle, you will get a 3-loop Möbius strip. M.C. Escher used this 
property in some of his most famous etchings. 
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And other
memorable
triples – Part I

What’s interesting about the triple of consecutive integers
3, 4, 5? Almost anyone knows the answer to that: we have the
beautiful relation 3� + 4� = 5�, and therefore, as a consequence
of the converse of Pythagoras’ theorem, a triangle with sides
3, 4, 5 is right-angled.

It is easy to show that (3, 4, 5) is the only triple of consecutive
integers which can serve as the sides of a right-angled
triangle. But in fact rather more can be said, which also

makes the matter that much more interesting:

Theorem 1. Let 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 be an integer. Then the triangle with sides
𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 + 𝑛𝑛, 𝑛𝑛𝑛𝑛 + 𝑛𝑛 is obtuse-angled for 𝑛𝑛𝑛𝑛 = 𝑛𝑛; right-angled for 𝑛𝑛𝑛𝑛 = 3;
and acute-angled for all 𝑛𝑛𝑛𝑛 𝑛𝑛 3.

The statement is depicted in Figure 1. To see why the claim made
in the theorem is true, we examine the expression
𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� − (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� = 𝑛𝑛𝑛𝑛� − 𝑛𝑛𝑛𝑛𝑛𝑛 − 3, which conveniently
factorizes as (𝑛𝑛𝑛𝑛 + 𝑛𝑛)(𝑛𝑛𝑛𝑛 − 3). From this we infer the following:

𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� − (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� is �
< 0 for 𝑛𝑛𝑛𝑛 = 𝑛𝑛,
= 0 for 𝑛𝑛𝑛𝑛 = 3,
𝑛𝑛 0 for 𝑛𝑛𝑛𝑛 𝑛𝑛 3𝑛𝑛

The generalized version of Pythagoras’ theorem now implies the
stated result. (To refresh your memory, here is what this
theorem asserts: In △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the quantity 𝑎𝑎𝑎𝑎� + 𝑏𝑏𝑏𝑏� − 𝑐𝑐𝑐𝑐� is greater
than, equal to, or less than 0, depending on whether ∡𝐴𝐴𝐴𝐴 is greater
than, equal to, or less than a right angle.)
Keywords: Pythagoras, triple, acute, obtuse, consecutive integers, touching
circles, trisection, in-radius
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Figure 1. Triangle with sides n, n+ 1 and n+ 2

Remark 1. Wemay also express the above
argument in terms of the cosine rule which states
that in △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the cosine of the angle opposite
side 𝑎𝑎𝑎𝑎 is equal to (𝑏𝑏𝑏𝑏� + 𝑐𝑐𝑐𝑐� − 𝑎𝑎𝑎𝑎�)/2𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐. Using this
we �ind that in the triangle with sides 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 + 𝑛𝑛,
𝑛𝑛𝑛𝑛 + 2, the cosine of the largest angle (which will
be opposite the largest side) is:

𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� − (𝑛𝑛𝑛𝑛 + 2)�
2𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 𝑛𝑛) = 𝑛𝑛𝑛𝑛 − 𝑛𝑛

2𝑛𝑛𝑛𝑛
(on simpli�ication).

We see that the cosine of this angle is
negative for 𝑛𝑛𝑛𝑛 = 2, zero for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, and positive
for 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛. The conclusion obtained is the same as
earlier: the triangle is obtuse-angled for 𝑛𝑛𝑛𝑛 = 2,
right-angled for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, and acute-angled for
𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛.
Remark 2. The condition 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 is needed so that
the sides satisfy the triangle inequality: “Any two
sides of a triangle are together greater than the
third one.” The inequality fails for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, since
𝑛𝑛 + 2 = 𝑛𝑛, and we get a ��lat� triangle with angles
of 𝑛𝑛80∘, 0∘ and 0∘. (The above formula for the
cosine shows that the cosines of the angles are
−𝑛𝑛, 𝑛𝑛 and 𝑛𝑛, corresponding to angles of 𝑛𝑛80∘, 0∘

and 0∘.) If the de�inition of obtuseness can be
extended to cover such a triangle, then we do not
need to include the condition 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛; we could just
say: “Let 𝑛𝑛𝑛𝑛 be a positive integer.”
Thus the triple (𝑛𝑛, 4, 5) has some pretty features.
We now get a bit greedy and ask: Are there other
nice features that this triple has? We �ind that it
does, and in this article—which is the �irst in a
multi-part series—we shall describe three such
features.
In follow-up articles of the series we will ask: Are
there other triples of consecutive integers which
possess geometric features of interest? This is an
open-ended question and many different kinds of
results can be envisaged, depending on which
“features of interest” we choose to examine. But of
that, more later.

Three circles within a circle
In Figure 2 (a), we see a circle 𝒞𝒞𝒞𝒞� with three
circles within it, all tangent to it and also to each
other. Two of them, 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�, have half the size
of 𝒞𝒞𝒞𝒞� (and therefore pass through the centre 𝑂𝑂𝑂𝑂 of
𝒞𝒞𝒞𝒞�). The remaining one, 𝒞𝒞𝒞𝒞�, �its tightly in one of
the spaces enclosed by 𝒞𝒞𝒞𝒞�, 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�.

O

C1

C2 C3

C4

O

A

B C

(a) (b)

Figure 2. Finding the radius of 𝒞𝒞𝒞𝒞�2 At Right Angles ∣ Vol. 4, No. 2, July 2015
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O
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B C

Figure 3. A 3-4-5 triangle hidden within the figure

Problem. To �ind the radius of 𝒞𝒞𝒞𝒞�.
Let 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 be the centres of 𝒞𝒞𝒞𝒞�, 𝒞𝒞𝒞𝒞�, 𝒞𝒞𝒞𝒞�, respectively.
Note that 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 are collinear with 𝑂𝑂𝑂𝑂; 𝐴𝐴𝐴𝐴 and 𝑂𝑂𝑂𝑂 are
collinear with the point of contact of 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�;
and 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 are collinear with the point of contact
of 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�. Let 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞� have unit radius, and
let the radius of 𝒞𝒞𝒞𝒞� be 𝑥𝑥𝑥𝑥. Then, in Figure 2 (b),
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is isosceles with 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝑥𝑥𝑥𝑥 𝐴𝐴 𝐴𝐴, and
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵. Also, the altitude 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂 𝐴𝐴 𝐵𝐵 𝐴𝐴 𝑥𝑥𝑥𝑥.
Nowwe are in a position to apply the Pythagorean
Theorem to the right-angled △𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴; we get:

(𝑥𝑥𝑥𝑥 𝐴𝐴 𝐴𝐴𝑥𝑥� 𝐴𝐴 (𝐵𝐵 𝐵𝐵 𝑥𝑥𝑥𝑥𝑥𝑥� 𝐴𝐴 𝐴𝐴�.

This simpli�ies to 6𝑥𝑥𝑥𝑥 𝐴𝐴 𝑥𝑥, giving 𝑥𝑥𝑥𝑥 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥. Hence
the radius of 𝒞𝒞𝒞𝒞� is 𝐴𝐴𝐴𝐴𝐴𝐴 that of 𝒞𝒞𝒞𝒞�.
Now let us focus our attention on △𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴. Its side
lengths are the following:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐵𝐵
𝑥𝑥 𝐴𝐴 5

𝑥𝑥𝐴𝐴 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂 𝐴𝐴 𝐵𝐵 𝐴𝐴 𝐵𝐵
𝑥𝑥 𝐴𝐴 𝑥𝑥

𝑥𝑥𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴

which means that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐵𝐵 𝑥𝑥 𝐵𝐵 5. So,
lurking within this �igure is a 3-4-5 triangle� �e
have shown this in a separate �igure (Figure 3).

Folding a third
Given a square piece of paper—the kind used in
origami—it is easy to produce folds corresponding
to fractions such as 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴8, 𝑥𝑥𝑥𝑥𝑥𝑥, and so on;
repeated halving is involved, and nothing more. It
is less clear how we can do the same for a fraction
like 𝐴𝐴𝐴𝐴𝐴𝐴. It would seem that we have to resort to
visual estimation and/or trial-and-error. In the
July 2012 issue of At Right Angles (the inaugural
issue), Shiv Gaur described an elegant iterative
procedure that will divide a rectangular strip into
�ive equal parts; a similar method will yield three
equal parts. Here we describe a paper folding
method that will directly locate a point of
trisection of one side of the square.
In Figure 4 (a), we see a square 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 folded so
that vertex 𝐴𝐴𝐴𝐴 falls upon the midpoint 𝑃𝑃𝑃𝑃 of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. The
crease of the fold is 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, and the image of 𝐴𝐴𝐴𝐴 under
the fold is 𝑆𝑆𝑆𝑆. The point where 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 cuts 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is 𝑇𝑇𝑇𝑇.
Claim. 𝑇𝑇𝑇𝑇 is a point of trisection of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, with
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵 𝐵𝐵 𝐴𝐴, and therefore, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵𝑥𝑥𝑥𝑥,
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴.
To prove the claim we move to Figure 4 (b). Let
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵 and 𝐴𝐴𝐴𝐴𝑄𝑄𝑄𝑄 𝐴𝐴 𝑥𝑥𝑥𝑥; then 𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴, hence
𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃    (for, 𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴 coincides with 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 after the
fold). Applying the Pythagorean Theorem to
△𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, we get (𝐵𝐵 𝐵𝐵 𝑥𝑥𝑥𝑥𝑥𝑥� 𝐴𝐴 𝑥𝑥𝑥𝑥� 𝐴𝐴 𝐴𝐴�, and this yields
𝑥𝑥𝑥𝑥 𝐴𝐴 𝑥𝑥𝑥𝑥𝑥𝑥 on solving for 𝑥𝑥𝑥𝑥.
Next we use triangle similarity: △𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑄𝑄 △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
(look at their angles to see why), so
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐵𝐵 𝑥𝑥𝑥𝑥, giving 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴. Since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵, it
follows that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵 𝐵𝐵 𝑥𝑥. Therefore, 𝑇𝑇𝑇𝑇 is a
point of trisection of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.
And now for our bonus. Let us look again at
△𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Its side lengths are: 𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝐴𝐴 𝐴𝐴 and
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Figure 1. Triangle with sides n, n+ 1 and n+ 2

Remark 1. Wemay also express the above
argument in terms of the cosine rule which states
that in △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the cosine of the angle opposite
side 𝑎𝑎𝑎𝑎 is equal to (𝑏𝑏𝑏𝑏� + 𝑐𝑐𝑐𝑐� − 𝑎𝑎𝑎𝑎�)/2𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐. Using this
we �ind that in the triangle with sides 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 + 𝑛𝑛,
𝑛𝑛𝑛𝑛 + 2, the cosine of the largest angle (which will
be opposite the largest side) is:

𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� − (𝑛𝑛𝑛𝑛 + 2)�
2𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 𝑛𝑛) = 𝑛𝑛𝑛𝑛 − 𝑛𝑛

2𝑛𝑛𝑛𝑛
(on simpli�ication).

We see that the cosine of this angle is
negative for 𝑛𝑛𝑛𝑛 = 2, zero for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, and positive
for 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛. The conclusion obtained is the same as
earlier: the triangle is obtuse-angled for 𝑛𝑛𝑛𝑛 = 2,
right-angled for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, and acute-angled for
𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛.
Remark 2. The condition 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 is needed so that
the sides satisfy the triangle inequality: “Any two
sides of a triangle are together greater than the
third one.” The inequality fails for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, since
𝑛𝑛 + 2 = 𝑛𝑛, and we get a ��lat� triangle with angles
of 𝑛𝑛80∘, 0∘ and 0∘. (The above formula for the
cosine shows that the cosines of the angles are
−𝑛𝑛, 𝑛𝑛 and 𝑛𝑛, corresponding to angles of 𝑛𝑛80∘, 0∘

and 0∘.) If the de�inition of obtuseness can be
extended to cover such a triangle, then we do not
need to include the condition 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛; we could just
say: “Let 𝑛𝑛𝑛𝑛 be a positive integer.”
Thus the triple (𝑛𝑛, 4, 5) has some pretty features.
We now get a bit greedy and ask: Are there other
nice features that this triple has? We �ind that it
does, and in this article—which is the �irst in a
multi-part series—we shall describe three such
features.
In follow-up articles of the series we will ask: Are
there other triples of consecutive integers which
possess geometric features of interest? This is an
open-ended question and many different kinds of
results can be envisaged, depending on which
“features of interest” we choose to examine. But of
that, more later.

Three circles within a circle
In Figure 2 (a), we see a circle 𝒞𝒞𝒞𝒞� with three
circles within it, all tangent to it and also to each
other. Two of them, 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�, have half the size
of 𝒞𝒞𝒞𝒞� (and therefore pass through the centre 𝑂𝑂𝑂𝑂 of
𝒞𝒞𝒞𝒞�). The remaining one, 𝒞𝒞𝒞𝒞�, �its tightly in one of
the spaces enclosed by 𝒞𝒞𝒞𝒞�, 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�.
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Figure 5. The in-radius of a 3-4-5 triangle is 1 unit

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄 𝑄𝑄 𝑄𝑄 𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄 𝑄𝑄𝑄𝑄𝑄𝑄. Hence its sides are in the
ratio 𝑄𝑄 ∶ 𝑄𝑄 ∶ 𝑄𝑄. And since △𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is similar to
△𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, its sides too are in the ratio 𝑄𝑄 ∶ 𝑄𝑄 ∶ 𝑄𝑄.
So we have not one but two 3-4-5 triangles hidden
within this �igure.

The in-radius of the 3-4-5 triangle
Our last featured property focuses on what looks
like a numerical oddity: the area of the 3-4-5
triangle equals its semi-perimeter. For, its area
equals �

�(𝑄𝑄 × 𝑄𝑄) 𝑄𝑄 6, and its semi-perimeter
equals �

�(𝑄𝑄 + 𝑄𝑄 + 𝑄𝑄) 𝑄𝑄 6. So both have the same
value. Those of you who are “physics-minded”
may give a cry of outrage here. “This is nonsense!
How can area ever equal semi-perimeter? Area
and semi-perimeter have different dimensions,
and one can never equal the other!” That is of
course perfectly right, and we shall not make that
error here. But the same observation can be
translated into a perfectly acceptable form to
which no one can object, via this simple formula
which connects the in-radius 𝑟𝑟𝑟𝑟 of a triangle, its
area Δ and its semi-perimeter 𝑠𝑠𝑠𝑠:

𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 𝑠𝑠𝑠 𝑟𝑟 or 𝑟𝑟𝑟𝑟 𝑄𝑄 Δ
𝑠𝑠𝑠𝑠 .

This tells us that for a 3-4-5 triangle, the in-radius
is 1 unit. (See Figure 5.) Now we see the source of
the dimensionality problem and its resolution at
the same time: namely, that the correct
relationship is “area equals semi-perimeter times
in-radius which equals 1 unit.”
The mathematician within us is now provoked to
ask the following question: Are there other
integer-sided right-angled triangles whose
in-radius is 1 unit? We shall show that the answer
is No.
Let 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴 be an integer-sided right-angled triangle
with ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶𝐶𝐶∘. Let its sides be 𝑎𝑎𝑎𝑎𝑟𝑟 𝑎𝑎𝑎𝑎𝑟𝑟 𝑎𝑎𝑎𝑎. Then we
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Figure 6. The in-radius of a right triangle:

r 𝑄𝑄 1
2(a+ b𝑄𝑄 c)

have:

Δ 𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑄𝑄 𝑟𝑟 𝑠𝑠𝑠𝑠 𝑄𝑄 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎

𝑄𝑄 𝑟𝑟 ∴ 𝑟𝑟𝑟𝑟 𝑄𝑄 Δ
𝑠𝑠𝑠𝑠 𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 .

Since 𝑟𝑟𝑟𝑟 𝑄𝑄 𝑄we get:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎𝑟𝑟 𝑟 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎.

As the triangle is right-angled, we also have
𝑎𝑎𝑎𝑎� 𝑄𝑄 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�. It follows that

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎)� 𝑄𝑄 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�.

Wemust �ind pairs of integers that solve the
above equation. To avoid duplication of solutions
we may assume that 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎. Note that this actually
means 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 as we cannot have 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎. (We cannot
have an integer-sided right-angled triangle which
is also isosceles. This is the same as asserting that
√𝑄𝑄 is not a rational number.) Let us now write the
above equation as

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎)� 𝑄𝑄 𝑄𝑄𝑄𝑄� 𝑄𝑄 𝑎𝑎𝑎𝑎�.

The expression on the left side factorizes as
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎)(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄𝑎𝑎𝑎𝑎) 𝑄𝑄 𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄𝑎𝑎𝑎𝑎).
Hence we have:

(𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎𝑎

Since 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎𝑟𝑟 𝑎𝑎𝑎𝑎 are integers, we have
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄. Hence the above equality can hold only
if we have 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄. These
conditions yield:

(𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎   𝑎𝑎𝑎𝑎� 𝑄𝑄 𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄 𝑄𝑄𝑄𝑄

which yields 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎  (obviously 𝑎𝑎𝑎𝑎 𝑏𝑏 𝐶𝐶) and hence
𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄 and 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 . Thus the 3-4-5 triangle is the
only integer-sided right-angled triangle whose
in-radius is 1 unit.
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Alternate solution. Here is another way of
reaching the same conclusion. It may be preferred
by some, and it also generalizes more easily. It
starts by establishing a neat geometrical result: If
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is right-angled with ∡𝐴𝐴𝐴𝐴 𝐶𝐶 𝐶𝐶𝐶𝐶∘, then the
radius of the incircle of the triangle is
(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. The result has value and interest in
itself (mathematicians would call it a ‘lemma’).
Let the incircle touch the sides 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at
points 𝐷𝐷𝐷𝐷𝐵𝐵 𝐷𝐷𝐷𝐷𝐵𝐵 𝐷𝐷𝐷𝐷 respectively. The triangle being
right-angled at 𝐴𝐴𝐴𝐴, points 𝐼𝐼𝐼𝐼𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵 form the
vertices of a square of side 𝑟𝑟𝑟𝑟, hence 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶 𝑟𝑟𝑟𝑟 𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.
From this it follows that 𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    and
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷    . Next, drawing on the fact that the two
tangents to a circle from a point outside the circle
have equal length, it follows that 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷    and
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    . From this we get:

(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑟𝑟𝑟𝑟𝑎𝑎 𝑎𝑎 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑟𝑟𝑟𝑟𝑎𝑎 𝐶𝐶 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎 𝑟𝑟𝑟𝑟 𝑟𝑟 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎 𝐵𝐵

as claimed.
Now we apply this result to the problem at hand.
Let 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 be the sides of an integer-sided
right-angled triangle whose in-radius is 1 unit. We
may assume with no loss of generality that
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎. The result just proved implies that
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎, giving 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎. Invoking the
Pythagorean relation we get:

𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎� 𝐶𝐶 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎�.
This yields: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 𝐶𝐶 𝐶𝐶, i.e.,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎𝑎𝑎. Adding 𝑎𝑎 to both sides and
factorizing, we get:
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 𝐶𝐶 𝑎𝑎𝐵𝐵 𝑎𝑎 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎.
The only way of expressing 𝑎𝑎 as a product of two
positive integers is 𝑎𝑎 𝑎𝑎 1 × 𝑎𝑎, so we must have
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 𝐶𝐶 𝐶 and 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 𝑎𝑎 𝑎𝑎 (remember that 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎),
giving 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎 and 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 and hence 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑐𝑐. We reach
the same conclusion as earlier.
The advantage of this approach is that it can easily
be extended. For example, we may want to list the

Pythagorean triples which correspond to
triangles with in-radius 𝑎𝑎 units. Since the 3-4-5
triangle has in-radius 1 unit, it follows by scaling
that the 6-8-10 triangle has in-radius 𝑎𝑎 units. Are
there any others? Let’s see …. Let 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 be the
sides of an integer-sided right-angled triangle
whose in-radius is 𝑎𝑎 units; assume that 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎.
Then we have 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎, giving 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎.
Hence we have:

𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎� 𝐶𝐶 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎�.

This yields: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 1𝑎𝑎 𝐶𝐶 𝐶𝐶, i.e.,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎𝑎𝑎. Adding 1𝑎𝑎 to both sides and
factorizing, we get:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 1𝑎𝑎 𝐶𝐶 𝑎𝑎𝐵𝐵 𝑎𝑎 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎.

The ways of expressing 𝑎𝑎 as a product of two
positive integers are 𝑎𝑎 𝑎𝑎 1 × 𝑎𝑎 𝑎𝑎 𝑎𝑎 × 𝑎𝑎, so the
possibilities are:

(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎 (𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎
(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝐶𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎 (𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶 𝐶𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎.

So there are two such triangles—the 5-12-13
triangle and the 6-8-10 triangle—which have
in-radius equal to 𝑎𝑎 units.
Readers may wish to continue the exploration and
search for 𝑟𝑟𝑟𝑟-values which give rise to large
numbers of candidate triangles.
Closing remark. We have attempted to list some
features of the right-angled triangle with sides
3-4-5, and to highlight con�igurations where this
triangle occurs naturally. Without doubt, there
are many more such features and many more such
con�igurations. We invite you to design
investigations for your students which add to the
above list. In the process, students could learn
how to make conjectures and then test them and
prove them using valid mathematical procedures.
May the list grow, and may the conjectures
outnumber the theorems!
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Majid Shaikh

Divisibility
Tests by
Powers of 2

There is a well-known test for divisibility by powers of
2: to check the divisibility of a number𝑀𝑀𝑀𝑀 by 2�, we form a
new number𝑀𝑀𝑀𝑀� using only the last 𝑛𝑛𝑛𝑛 digits of𝑀𝑀𝑀𝑀 and then

examine the divisibility of that number (i.e.,𝑀𝑀𝑀𝑀�) by 2�. The test
works because of the easily-proved fact that𝑀𝑀𝑀𝑀 is divisible by 2�
if and only if𝑀𝑀𝑀𝑀� is divisible by 2�. All that is required for this is
the observation that 10� is divisible by 2�.
In the traditional implementation of this test, checking whether
𝑀𝑀𝑀𝑀� is divisible by 2� is accomplished by actual division, i.e.,
actually working out𝑀𝑀𝑀𝑀� ÷ 2�; there are no further shortcuts. In
this note, we show that checking the divisibility of𝑀𝑀𝑀𝑀� by 2� can
be done with less effort than actual division.

A new procedure
Purpose: To check the divisibility of a given number𝑀𝑀𝑀𝑀 by 2�. We
execute the following steps.

• Form the number𝑀𝑀𝑀𝑀� using only the last 𝑛𝑛𝑛𝑛 digits of𝑀𝑀𝑀𝑀.
• Take one digit at a time of𝑀𝑀𝑀𝑀�, starting from the left side.
(The ‘right’ side is the units side.)

• Divide these digits by the increasing powers of 2, starting
with 2� = 2.

• After each division, retain only the remainder and combine
it with the next digit of𝑀𝑀𝑀𝑀�, appending it from the left side to
form a new number. Use that number for the next division.

Keywords: Divisibility, digits, place value, powers of 10, divisor, quotient,
remainder
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• Repeat the procedure till the last digit.
• If the �inal remainder obtained is 0, then𝑀𝑀𝑀𝑀 is
divisible by 2�, else not.

The procedure is best illustrated using a few
concrete examples.
Example 1. Let us check whether𝑀𝑀𝑀𝑀 𝑀𝑀 𝑀𝑀2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is
divisible by 8.
Here the divisor is 8 𝑀𝑀 2�, so we consider only the
last three digits, giving𝑀𝑀𝑀𝑀� 𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀. Following the
steps given above:
Step 1: Divide 𝑀𝑀 by 2� 𝑀𝑀 2. The remainder is 0 so

there is no ‘carry’. We move to the next
digit.

Step 2: Divide 𝑀𝑀 by 2� 𝑀𝑀 𝑀𝑀. The remainder is 𝑀𝑀. So
the ‘carry’ is 𝑀𝑀; this is combined with the
next digit (𝑀𝑀) to form the number 𝑀𝑀𝑀𝑀.

Step 3: Divide 𝑀𝑀𝑀𝑀 by 2� 𝑀𝑀 8. There is no
remainder.

Hence 𝑀𝑀2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is divisible by 8.
Example 2. Let us check whether𝑀𝑀𝑀𝑀 𝑀𝑀 𝑀𝑀2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is
divisible by 𝑀𝑀𝑀𝑀.
Here the divisor is 𝑀𝑀𝑀𝑀 𝑀𝑀 2�, so𝑀𝑀𝑀𝑀� 𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.
Step 1: Divide 𝑀𝑀 by 2. The remainder is 𝑀𝑀.
Step 2: Divide 𝑀𝑀𝑀𝑀 by 𝑀𝑀. The remainder is 2.
Step 3: Divide 2𝑀𝑀 by 8. The remainder is 𝑀𝑀.
Step 4: Divide 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀. There is no remainder.
Hence 𝑀𝑀2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is divisible by 𝑀𝑀𝑀𝑀.
Example 3. Let us check whether𝑀𝑀𝑀𝑀 𝑀𝑀 𝑀𝑀𝑀𝑀0𝑀𝑀𝑀𝑀0 is
divisible by 𝑀𝑀2.
Here the divisor is 𝑀𝑀2 𝑀𝑀 2�, so𝑀𝑀𝑀𝑀� 𝑀𝑀 𝑀𝑀0𝑀𝑀𝑀𝑀0.
Step 1: Divide 𝑀𝑀 by 2. The remainder is 𝑀𝑀.
Step 2: Divide 𝑀𝑀0 by 𝑀𝑀. The remainder is 2.
Step 3: Divide 2𝑀𝑀 by 8. The remainder is 2.
Step 4: Divide 2𝑀𝑀 by 𝑀𝑀𝑀𝑀. The remainder is 8.
Step 5: Divide 80 by 𝑀𝑀2. The remainder is 𝑀𝑀𝑀𝑀

which is non-zero.
Hence 𝑀𝑀𝑀𝑀0𝑀𝑀𝑀𝑀0 is not divisible by 𝑀𝑀2. Note that the
remainder (𝑀𝑀𝑀𝑀) obtained in the last step is also
the remainder left when 𝑀𝑀𝑀𝑀0𝑀𝑀𝑀𝑀0 is divided by 𝑀𝑀2.
The mechanics of the algorithm should be clear
from these examples. The computations are best
done with the digits arranged in a tabular form,

but this is easier done in handwritten work than
in printed form, which is why we have described
the algorithm the way we have done.
We will prove the correctness of the algorithm
later.

The quotient
It is interesting that the quotient too can be
worked out by this method, but with a slight
modi�ication: we retain the quotient at each
stage. Then, from this sequence of partial
quotients, we can recover the desired quotient.
All we need to do is multiply each partial
quotient by 𝑀𝑀 and then add the next partial
quotient, and so on till the end.
To start with we only show how to compute the
quotient in the division𝑀𝑀𝑀𝑀� ÷ 2�. Remember that
𝑀𝑀𝑀𝑀� has only 𝑛𝑛𝑛𝑛 digits.
Example 4. Let us compute the quotient in the
division 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ÷ 𝑀𝑀𝑀𝑀.
Step 1: Divide 𝑀𝑀 by 2. The quotient is 𝑀𝑀 and the

remainder is 𝑀𝑀.
Step 2: Divide 𝑀𝑀𝑀𝑀 by 𝑀𝑀. The quotient is 𝑀𝑀 and the

remainder is 2.
Step 3: Divide 2𝑀𝑀 by 8. The quotient is 𝑀𝑀 and the

remainder is 𝑀𝑀.
Step 4: Divide 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀. The quotient is 𝑀𝑀 and

there is no remainder.
The sequence of quotients, starting from the �irst
one, is 𝑀𝑀, 𝑀𝑀, 𝑀𝑀, 𝑀𝑀. So the computations are:
𝑀𝑀 ⟼ (𝑀𝑀 × 𝑀𝑀) + 𝑀𝑀 𝑀𝑀 8 ⟼ (8 × 𝑀𝑀) + 𝑀𝑀

𝑀𝑀 𝑀𝑀𝑀𝑀 ⟼ (𝑀𝑀𝑀𝑀 × 𝑀𝑀) + 𝑀𝑀 𝑀𝑀 2𝑀𝑀𝑀𝑀.
Hence the quotient is 2𝑀𝑀𝑀𝑀.
Example 5. Let us compute the quotient in the
division 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ÷ 𝑀𝑀2.
Step 1: Divide 2 by 2. The quotient is 𝑀𝑀 and the

remainder is 0.
Step 2: Divide 𝑀𝑀 by 𝑀𝑀. The quotient is 0 and the

remainder is 𝑀𝑀.
Step 3: Divide 𝑀𝑀𝑀𝑀 by 8. The quotient is 𝑀𝑀 and the

remainder is 2.
Step 4: Divide 2𝑀𝑀 by 𝑀𝑀𝑀𝑀. The quotient is 𝑀𝑀 and the

remainder is 9.
Step 5: Divide 9𝑀𝑀 by 𝑀𝑀2. The quotient is 𝑀𝑀 and

there is no remainder.
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There is a well-known test for divisibility by powers of
2: to check the divisibility of a number𝑀𝑀𝑀𝑀 by 2�, we form a
new number𝑀𝑀𝑀𝑀� using only the last 𝑛𝑛𝑛𝑛 digits of𝑀𝑀𝑀𝑀 and then

examine the divisibility of that number (i.e.,𝑀𝑀𝑀𝑀�) by 2�. The test
works because of the easily-proved fact that𝑀𝑀𝑀𝑀 is divisible by 2�
if and only if𝑀𝑀𝑀𝑀� is divisible by 2�. All that is required for this is
the observation that 10� is divisible by 2�.
In the traditional implementation of this test, checking whether
𝑀𝑀𝑀𝑀� is divisible by 2� is accomplished by actual division, i.e.,
actually working out𝑀𝑀𝑀𝑀� ÷ 2�; there are no further shortcuts. In
this note, we show that checking the divisibility of𝑀𝑀𝑀𝑀� by 2� can
be done with less effort than actual division.

A new procedure
Purpose: To check the divisibility of a given number𝑀𝑀𝑀𝑀 by 2�. We
execute the following steps.

• Form the number𝑀𝑀𝑀𝑀� using only the last 𝑛𝑛𝑛𝑛 digits of𝑀𝑀𝑀𝑀.
• Take one digit at a time of𝑀𝑀𝑀𝑀�, starting from the left side.
(The ‘right’ side is the units side.)

• Divide these digits by the increasing powers of 2, starting
with 2� = 2.

• After each division, retain only the remainder and combine
it with the next digit of𝑀𝑀𝑀𝑀�, appending it from the left side to
form a new number. Use that number for the next division.
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Explaining the recovery of the quotient
Nowwe explain why the method described for
recovering the quotient works. Once again, we
shall work through two examples in a suggestive
manner and leave it at that. We use the instances
3456 ÷ 16 and 23456 ÷ 32.
Example 6. Let us compute the quotient in the
division 3456 ÷ 16. Here is the working.

Action Quotient Remainder
Divide 3 by 2 1 1
Divide 14 by 4 3 2
Divide 25 by 8 3 1
Divide 16 by 16 1 0

The sequence of partial quotients is 1, 3, 3, 1. Now
consider:

3456 = 2000 + 1200 + 240 + 16
= (125 + 75 + 15 + 1) × 16
= �𝟏𝟏𝟏𝟏 𝟏𝟏 � + 𝟑𝟑𝟑𝟑 × 5� + 𝟑𝟑𝟑𝟑 × 5� + 𝟏𝟏𝟏𝟏𝟏 𝟏𝟏𝟏 𝟏

We see the role played by the string of digits
1, 3, 3, 1.

Example 7. Let us compute the quotient in the
division 23456 ÷ 32.

Action Quotient Remainder
Divide 2 by 2 1 0
Divide 3 by 4 0 3
Divide 34 by 8 4 2
Divide 25 by 16 1 9
Divide 96 by 32 3 0

The sequence of quotients, starting from the �irst
one, is 1, 0, 4, 1, 3. Now consider:

23456 = 20000 + 0 + 3200 + 160 + 96
= (625 + 0 + 100 + 5 + 3) × 32
= �𝟏𝟏𝟏𝟏 𝟏𝟏 � + 𝟎𝟎𝟎𝟎 × 5� + 𝟒𝟒𝟒𝟒 × 5� + 𝟏𝟏𝟏𝟏 × 5�

+ 𝟑𝟑𝟑𝟑) × 32.

We see the role played by the string of digits
1, 0, 4, 1, 3.
Thus the procedure, which looks mysterious at
�irst encounter, is simply a manifestation of the
fact that 10� = 2� × 5�.
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The sequence of quotients, starting from the �irst
one, is 1, 0, 4, 1, 3. The computations:

1 ⟼ (1 × 5) + 0 = 5 ⟼ (5 × 5) + 4
= 29 ⟼ (29 × 5) + 1
= 146 ⟼ (146 × 5) + 3 = 733.

Hence the quotient is 733.

Explaining the divisibility test
Nowwe explain why the divisibility procedure
works. We shall show how it works because of the
place value system. We start by noting that:

• 10 is divisible by 2 but not by 4. However, 20
is divisible by 4.

• 100 is divisible by 4 but not by 8. However,
200 is divisible by 8.

• 1000 is divisible by 8 but not by 16.
However, 2000 is divisible by 16.

And so on. In general, 10� is divisible by 2� but
not by 2���. However, 2 × 10� is divisible by 2���.
(When stated in that form, the reason should be
obvious, for 10� = 2� × 5� and
2 × 10� = 2��� × 5� .)

Consider the divisibility of (say) 3456 by 16. We
follow a theme commonly seen in divisibility
studies: if we subtract multiples of the divisor
from the dividend, divisibility will not be affected.
In other words, in checking, say, the divisibility of
𝑀𝑀𝑀𝑀 by 𝑑𝑑𝑑𝑑, we can equally well check the divisibility
of𝑀𝑀𝑀𝑀 𝑀𝑀 𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑 by 𝑑𝑑𝑑𝑑 for any convenient value of 𝑀𝑀𝑀𝑀; the
subtracted portion 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is then ‘washed’ away and
need not be looked at again. Combining this
observation with the one made above, we may
write:

3456 = 2000 + 1456
(here, 2000 is a multiple of 16)

= 2000 + 1200 + 256
(here, 1200 is a multiple of 16)

= 2000 + 1200 + 240 + 16
(here, 240 is a multiple of 16)

= a multiple of 16.

Now compare these steps with the ones made
when we checked the divisibility of 3456 by 16.
We have put the two actions side by side for ease
of understanding. In each line we have used a bold
font for the relevant digit.

Step 1 3456 = 2000+𝟏𝟏𝟏𝟏456 Divide 3 by 2. The remainder is 𝟏𝟏𝟏𝟏.

Step 2 1456 = 1200 + 𝟐𝟐𝟐𝟐56 Divide 14 by 4. The remainder is 𝟐𝟐𝟐𝟐.

Step 3 256 = 240 + 𝟏𝟏𝟏𝟏6 Divide 25 by 8. The remainder is 𝟏𝟏𝟏𝟏.

Step 4 16 = 1 × 16 Divide 16 by 16. There is no remainder.

Another example: checking whether𝑀𝑀𝑀𝑀 = 10640 is divisible by 32. We have:

Step 1 10640 = 0 + 𝟏𝟏𝟏𝟏0640 Divide 1 by 2. The remainder is 𝟏𝟏𝟏𝟏.

Step 2 10640 = 8000 +
𝟐𝟐𝟐𝟐640

Divide 10 by 4. The remainder is 𝟐𝟐𝟐𝟐.

Step 3 2640 = 2400 + 𝟐𝟐𝟐𝟐40 Divide 26 by 8. The remainder is 𝟐𝟐𝟐𝟐.

Step 4 240 = 160 + 𝟖𝟖𝟖𝟖0 Divide 24 by 16. The remainder is 𝟖𝟖𝟖𝟖.

Step 5 80 = 2 × 32 + 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 Divide 80 by 32. The remainder is 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.

We shall not try to explain the working any more as we feel that these examples carry enough of a
suggestion that one can mentally construct the explanation or proof for oneself.
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Explaining the recovery of the quotient
Nowwe explain why the method described for
recovering the quotient works. Once again, we
shall work through two examples in a suggestive
manner and leave it at that. We use the instances
3456 ÷ 16 and 23456 ÷ 32.
Example 6. Let us compute the quotient in the
division 3456 ÷ 16. Here is the working.

Action Quotient Remainder
Divide 3 by 2 1 1
Divide 14 by 4 3 2
Divide 25 by 8 3 1
Divide 16 by 16 1 0

The sequence of partial quotients is 1, 3, 3, 1. Now
consider:

3456 = 2000 + 1200 + 240 + 16
= (125 + 75 + 15 + 1) × 16
= �𝟏𝟏𝟏𝟏 𝟏𝟏 � + 𝟑𝟑𝟑𝟑 × 5� + 𝟑𝟑𝟑𝟑 × 5� + 𝟏𝟏𝟏𝟏𝟏 𝟏𝟏𝟏 𝟏

We see the role played by the string of digits
1, 3, 3, 1.

Example 7. Let us compute the quotient in the
division 23456 ÷ 32.

Action Quotient Remainder
Divide 2 by 2 1 0
Divide 3 by 4 0 3
Divide 34 by 8 4 2
Divide 25 by 16 1 9
Divide 96 by 32 3 0

The sequence of quotients, starting from the �irst
one, is 1, 0, 4, 1, 3. Now consider:

23456 = 20000 + 0 + 3200 + 160 + 96
= (625 + 0 + 100 + 5 + 3) × 32
= �𝟏𝟏𝟏𝟏 𝟏𝟏 � + 𝟎𝟎𝟎𝟎 × 5� + 𝟒𝟒𝟒𝟒 × 5� + 𝟏𝟏𝟏𝟏 × 5�

+ 𝟑𝟑𝟑𝟑) × 32.

We see the role played by the string of digits
1, 0, 4, 1, 3.
Thus the procedure, which looks mysterious at
�irst encounter, is simply a manifestation of the
fact that 10� = 2� × 5�.
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We shall prove relation (2). Write 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎�. Then the relation can be restated as:

�𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎
6 �

�
+ �𝑎𝑎𝑎𝑎2�

�
+ �𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎

3 �
�
𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎

6 ⋅ 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎
2 ⋅ 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎

3 . (3)

It is easily checked that relation (3) is an identity, true for all 𝑎𝑎𝑎𝑎. Indeed, both sides simplify to the
following after a routine computation:

𝑎𝑎𝑎𝑎�
6 𝑎𝑎 𝑎𝑎𝑎𝑎�

6 + 𝑎𝑎𝑎𝑎
3 𝑎𝑎 𝑎𝑎

3 𝑎𝑎 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎� + 2𝑎𝑎
6 . (4)

Hence relation (1) is true.
Postscript I. The fact that the two sides result in an easily factorized expression allows us to extend the
FaceBook post. Now we can write the following:

𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑� 𝑎𝑎 𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑 𝑎𝑎 9 × 𝑎𝑎𝑎𝑎2
6 ,

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� 𝑎𝑎 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 𝑎𝑎 99 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2
6 ,

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� 𝑎𝑎 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 𝑎𝑎 999 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2
6 ,

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� 𝑎𝑎 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 𝑎𝑎 9999 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2
6 ,

and so on and on and on and on!
Postscript II. A bit of judicious experimentation allows us to discover a second set of such relations, just
as pleasing:

𝟑𝟑𝟑𝟑� + 𝟕𝟕𝟕𝟕� + 𝟏𝟏𝟏𝟏� 𝑎𝑎 𝟑𝟑𝟑𝟑𝟕𝟕𝟕𝟕𝟏𝟏𝟏𝟏,
𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� + 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� 𝑎𝑎 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� + 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� 𝑎𝑎 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓
𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� + 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� 𝑎𝑎 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓

and so on and on and on and on!

We leave the veri�ication and proof to the reader.
Thanks to Ms Paromita Roy for the post!
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Shailesh Shirali

and so on and
on and on …
On the AtRiUM FaceBook page we came across
this striking set of arithmetical relations
(posted by a reader, Ms Paromita Roy):

Amazing Mathematical Fact!

𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑� = 𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

and so on and on and on and on!

The relations are true and can be checked using
a calculator. The “and so on and on and on …” invites us to
state and prove a valid mathematical generalization of the

relations. The obvious candidate is this statement:

(𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + (𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟏𝟏� + (𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟏𝟏𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟏𝟏� =
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟏𝟏𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 (1)

where the strings 166𝟏𝟏66, 500𝟏𝟏00 and 333𝟏𝟏33 all have the
same number of digits. We shall prove that relation (1) is true.
To do so we note that if the numbers 𝑥𝑥𝑥𝑥 = 166𝟏𝟏𝟏𝟏,
𝑦𝑦𝑦𝑦 = 500𝟏𝟏𝟏𝟏 and 𝑧𝑧𝑧𝑧 = 333𝟏𝟏𝟏𝟏 have 𝑛𝑛𝑛𝑛 digits each, then

𝑥𝑥𝑥𝑥 = 10� − 4
6 𝟑𝟑 𝑦𝑦𝑦𝑦 = 10�

2 𝟑𝟑 𝑧𝑧𝑧𝑧 = 10� − 1
3 .

With this notation, relation (1) can be stated as follows:

𝑥𝑥𝑥𝑥� + 𝑦𝑦𝑦𝑦� + 𝑧𝑧𝑧𝑧� = 𝑥𝑥𝑥𝑥 𝑥𝑥 10�� + 𝑦𝑦𝑦𝑦 𝑥𝑥 𝑥𝑥� + 𝑧𝑧𝑧𝑧. (2)

Keywords: Pattern, string, digits, powers of ten, sum of cubes
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We shall prove relation (2). Write 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎�. Then the relation can be restated as:

�𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎
6 �

�
+ �𝑎𝑎𝑎𝑎2�

�
+ �𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎

3 �
�
𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎

6 ⋅ 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎
2 ⋅ 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎

3 . (3)

It is easily checked that relation (3) is an identity, true for all 𝑎𝑎𝑎𝑎. Indeed, both sides simplify to the
following after a routine computation:

𝑎𝑎𝑎𝑎�
6 𝑎𝑎 𝑎𝑎𝑎𝑎�

6 + 𝑎𝑎𝑎𝑎
3 𝑎𝑎 𝑎𝑎

3 𝑎𝑎 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎� + 2𝑎𝑎
6 . (4)

Hence relation (1) is true.
Postscript I. The fact that the two sides result in an easily factorized expression allows us to extend the
FaceBook post. Now we can write the following:

𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑� 𝑎𝑎 𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑 𝑎𝑎 9 × 𝑎𝑎𝑎𝑎2
6 ,

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� 𝑎𝑎 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 𝑎𝑎 99 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2
6 ,

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� 𝑎𝑎 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 𝑎𝑎 999 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2
6 ,

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� + 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� 𝑎𝑎 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 𝑎𝑎 9999 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2
6 ,

and so on and on and on and on!
Postscript II. A bit of judicious experimentation allows us to discover a second set of such relations, just
as pleasing:

𝟑𝟑𝟑𝟑� + 𝟕𝟕𝟕𝟕� + 𝟏𝟏𝟏𝟏� 𝑎𝑎 𝟑𝟑𝟑𝟑𝟕𝟕𝟕𝟕𝟏𝟏𝟏𝟏,
𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� + 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� 𝑎𝑎 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓

𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� + 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� 𝑎𝑎 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓
𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑� + 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏� + 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓� 𝑎𝑎 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓

and so on and on and on and on!

We leave the veri�ication and proof to the reader.
Thanks to Ms Paromita Roy for the post!
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A Flower with
Four Petals

Shown below is a square with side 1 unit, with four circular
arcs drawn within it, each with radius 1 unit and centred at
the four vertices of the square. The four arcs demarcate a

region in the centre of the square, shown coloured green. The
problem we pose is to �ind the area 𝑥𝑥𝑥𝑥 of this region.

1 x

z

zz

z

y y

yy

To �ind 𝑥𝑥𝑥𝑥 we use a method that may remind you of Venn diagram
computations. We start by assigning symbols to the areas of the
other regions. The four regions marked 𝑦𝑦𝑦𝑦 are clearly congruent
to each other, as are the four regions marked 𝑧𝑧𝑧𝑧. Let their areas be
denoted by the same symbols (𝑦𝑦𝑦𝑦 and 𝑧𝑧𝑧𝑧). Then the following
relations are immediate:

𝑦𝑦𝑦𝑦 𝑦𝑦 𝑦𝑦𝑧𝑧𝑧𝑧 𝑦𝑦 1 𝑦𝑦 𝜋𝜋𝜋𝜋
4 , (1)

𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥      𝑥𝑥𝑥𝑥  𝜋𝜋𝜋𝜋
4� 𝑦𝑦

𝜋𝜋𝜋𝜋
𝑦𝑦 𝑦𝑦 1, (2)

𝑥𝑥𝑥𝑥 𝑦𝑦 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦 𝑦𝑦𝑦𝑦 𝑦𝑦 𝜋𝜋𝜋𝜋
6 𝑦𝑦 𝑦𝜋𝜋𝜋𝜋6 𝑦𝑦 √3

4 � 𝑦𝑦 𝜋𝜋𝜋𝜋
3 𝑦𝑦 √3

4 . (3)

Keywords: Unit circle, unit square, vertices, arcs, area, sector, segment,
triangle, angle
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The three equations are readily solved for 𝑧𝑧𝑧𝑧𝑧𝑧 𝑧𝑧𝑧𝑧𝑧𝑧 𝑧𝑧𝑧𝑧 (in that order). From (2) and (3) we get, by subtraction:

𝑧𝑧𝑧𝑧 𝑧𝑧 𝑧𝑧 𝑧𝑧 √3
4 𝑧𝑧 𝜋𝜋𝜋𝜋

6 . (4)

Next from (1) and (4) we get:

𝑧𝑧𝑧𝑧 𝑧𝑧 𝑧𝑧 𝑧𝑧 𝜋𝜋𝜋𝜋
4 𝑧𝑧 2 + √3

2 + 𝜋𝜋𝜋𝜋
3 𝑧𝑧 𝜋𝜋𝜋𝜋

𝑧𝑧2 + √3
2 𝑧𝑧 𝑧𝑧. (5)

Finally from (2) we get:
𝑧𝑧𝑧𝑧 𝑧𝑧 𝜋𝜋𝜋𝜋

3 𝑧𝑧 √3 + 𝑧𝑧. (6)

—Thanks to Shri Bharat Karmarkar for suggesting the problem.
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THEOREM CONCERNING A QUADRILATERAL

The picture above demonstrates a beautiful result which is true of every quadrilateral. It 
should be self-explanatory: On each side of the quadrilateral, we draw a square facing 
outwards. Next, we join the centres of opposite pairs of squares (see the thick red lines). 
Then the two line segments thus drawn have equal length, and they are perpendicular 
to each other. Isn’t that a beautiful result? Try finding a proof of it on your own.
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Step 2: Their odd multiples, listed row-wise:

3 9 15 21 27 33 …
5 15 25 35 45 55 …
7 21 35 49 63 77 …

Step 3: Subtract 11 from the numbers listed in
Step 2. Then discard all the negative
numbers so generated. We get:

−8 −2 4 10 16 22 …
−6 4 14 24 34 44 …
−4 10 24 38 52 66 …

The negative numbers (regarded as
‘discarded’) are shown highlighted in
green.

Step 4: The smallest even number that does not
occur in the lists of numbers that remain
is 2.

Step 5: Hence the next prime number 𝑝𝑝𝑝𝑝� is
11 + 2 = 13.

Example 2. �et us �ind 𝑝𝑝𝑝𝑝�� given the �irst nine
prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23.
Step 1: The odd primes till 𝑝𝑝𝑝𝑝� are

3, 5, 7, 11, 13, 17, 19.
Step 2: Their odd multiples, listed row-wise:

3 9 15 21 27 33 …
5 15 25 35 45 55 …
7 21 35 49 63 77 …
11 33 55 77 99 121 …
13 39 65 91 117 143 …
17 51 85 119 153 187 …
19 57 95 133 171 209 …

Step 3: Subtract 23 from the numbers listed in
Step 2. Then discard all the negative
numbers so generated. We get:

−20 −14 −8 −2 4 10 …
−18 −8 2 12 22 32 …
−16 −2 12 26 40 54 …
−12 10 32 54 76 98 …
−10 16 42 68 94 120 …
−6 28 62 96 130 164 …
−4 34 72 110 148 186 …

The negative numbers are shown
highlighted in green. They are discarded.

Step 4: The smallest even number that does not
occur in the lists of numbers that remain
is 6.

Step 5: Hence the next prime number 𝑝𝑝𝑝𝑝�� is
23 + 6 = 29.

Remarks.

• �iven the signi�icant role played by oddness
in this algorithm (odd multiples of the odd
primes), it seems �usti�ied to describe this as
a very odd algorithm!

• The algorithm is to be regarded as a
pedagogical curiosity rather than a practical
way of generating the primes. Its surprise
value is that it actually does yield the next
prime!

• But is it really all that mysterious? Or is it
simply a disguised way of applying the very
de�inition of a prime number? Is it simply a
disguised form of the well-known
Eratosthenes sieve? Perhaps! We’ll leave it to
you to work it out.
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Generating
the n-th Prime
Here is an unusual way of generating the prime numbers. It is
taken from a letter written by Ronald Skurnick of Nassau
Community College (New York, USA) to Mathematics Teacher
(National Council of Teachers of Mathematics) and published in
the November 2009 issue of the journal.

What it does is this: given the �irst 𝑛𝑛𝑛𝑛 primes 𝑝𝑝𝑝𝑝� = 2,
𝑝𝑝𝑝𝑝� = 3, 𝑝𝑝𝑝𝑝� = 5, …, 𝑝𝑝𝑝𝑝�, it works out the next prime
𝑝𝑝𝑝𝑝���. To avoid triviality we assume 𝑛𝑛𝑛𝑛 𝑛𝑛 3. Here’s how

it works:
Step 1: List the �irst 𝑛𝑛𝑛𝑛 𝑛𝑛 2 odd primes: 𝑝𝑝𝑝𝑝� = 3, 𝑝𝑝𝑝𝑝� = 5, …, 𝑝𝑝𝑝𝑝���.
Step 2: List the odd multiples of the primes listed in Step 1, as

many as are required (the number required will become
clear from the example).

Step 3: Subtract 𝑝𝑝𝑝𝑝� from all the numbers listed in Step 2. (The
resulting numbers are naturally all even.) Discard all the
negative numbers so obtained.

Step 4: Identify the smallest even number 2𝑘𝑘𝑘𝑘 that does not occur
in any of the lists of numbers that remain in Step 3.

Step 5: The desired prime number is then given by
𝑝𝑝𝑝𝑝��� = 𝑝𝑝𝑝𝑝� + 2𝑘𝑘𝑘𝑘.

What a strange procedure! Before we try to justify it, let us
demonstrate this using a few examples.

Example 1. Let us �ind 𝑝𝑝𝑝𝑝� given the �irst �ive prime numbers:
2, 3, 5, 7, 11.

Step 1: The odd primes till 𝑝𝑝𝑝𝑝� are 3, 5, 7.

Keywords: Odd, even, prime, algorithm, Eratosthenes sieve
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Step 2: Their odd multiples, listed row-wise:

3 9 15 21 27 33 …
5 15 25 35 45 55 …
7 21 35 49 63 77 …

Step 3: Subtract 11 from the numbers listed in
Step 2. Then discard all the negative
numbers so generated. We get:

−8 −2 4 10 16 22 …
−6 4 14 24 34 44 …
−4 10 24 38 52 66 …

The negative numbers (regarded as
‘discarded’) are shown highlighted in
green.

Step 4: The smallest even number that does not
occur in the lists of numbers that remain
is 2.

Step 5: Hence the next prime number 𝑝𝑝𝑝𝑝� is
11 + 2 = 13.

Example 2. �et us �ind 𝑝𝑝𝑝𝑝�� given the �irst nine
prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23.
Step 1: The odd primes till 𝑝𝑝𝑝𝑝� are

3, 5, 7, 11, 13, 17, 19.
Step 2: Their odd multiples, listed row-wise:

3 9 15 21 27 33 …
5 15 25 35 45 55 …
7 21 35 49 63 77 …
11 33 55 77 99 121 …
13 39 65 91 117 143 …
17 51 85 119 153 187 …
19 57 95 133 171 209 …

Step 3: Subtract 23 from the numbers listed in
Step 2. Then discard all the negative
numbers so generated. We get:

−20 −14 −8 −2 4 10 …
−18 −8 2 12 22 32 …
−16 −2 12 26 40 54 …
−12 10 32 54 76 98 …
−10 16 42 68 94 120 …
−6 28 62 96 130 164 …
−4 34 72 110 148 186 …

The negative numbers are shown
highlighted in green. They are discarded.

Step 4: The smallest even number that does not
occur in the lists of numbers that remain
is 6.

Step 5: Hence the next prime number 𝑝𝑝𝑝𝑝�� is
23 + 6 = 29.

Remarks.

• �iven the signi�icant role played by oddness
in this algorithm (odd multiples of the odd
primes), it seems �usti�ied to describe this as
a very odd algorithm!

• The algorithm is to be regarded as a
pedagogical curiosity rather than a practical
way of generating the primes. Its surprise
value is that it actually does yield the next
prime!

• But is it really all that mysterious? Or is it
simply a disguised way of applying the very
de�inition of a prime number? Is it simply a
disguised form of the well-known
Eratosthenes sieve? Perhaps! We’ll leave it to
you to work it out.
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and comfortable with the use of irrational numbers. The formula for the roots of a quadratic equation and
the properties of the angles of a triangle are also necessary prerequisites.
Each card (or set of cards) is a task which features a series of questions which build up in complexity.

Task 1

Consider the sequence 1, 1, 2, 3, 5, 8, 13, ………………
• What is the next term of this sequence?
• Generate the next 10 terms of this sequence.
• State in words how each new term is generated.
• Find an algebraic expression that expresses how each new term is generated.
• Find the ratio of each term to the preceding term. State your �inding.
• Do a similar investigation for the sequence 8, 10, 18, 28, 46, …………
• What is common between your �indings about the ratio in both these sequences?
• Choose any two natural numbers and generate the sequence in the same way. Do your �indings
change?

Teacher’s Note: Spreadsheets such as Excel can easily be used to generate the Fibonacci sequence. For a
complete description please refer to http:��teacherso�india.org�en�article�exploring-�ibonacci-
numbers-using-spreadsheet. This is also a great place to introduce students to a recursive formula for
generating a sequence.

Task 2

The golden ratio
• Consider the expression: 𝐹𝐹𝐹𝐹��� = 𝐹𝐹𝐹𝐹��� + 𝐹𝐹𝐹𝐹�……………………(1)
• We shall assume 𝐹𝐹𝐹𝐹� = 0 and 𝐹𝐹𝐹𝐹� = 1

If this expression is used to generate the Fibonacci sequence, state in words:
(i) What is 𝐹𝐹𝐹𝐹�?
(ii) Which equivalent expression describes the �ifth term?
(iii) What is meant by 𝐹𝐹𝐹𝐹�?
(iv) What does expression (1) mean?

• Using your observations regarding the Fibonacci sequence from task 1, what can you
conclude about the ratios ����

�� and ��
���� in the long run? Can we assume that after a certain

stage, ������ is nearly the same as ��
���� ?………(2)

• Using equations (1) and (2), we can conclude that �������
�� and ��

���� are ‘nearly the same’ after
a certain stage. Let us now replace ‘nearly the same’ by an equality sign. If ��

���� = 𝑥𝑥𝑥𝑥, then show
how this expression yields the equation �

� + 1 = 𝑥𝑥𝑥𝑥.
• Reduce this to the quadratic equation 𝑥𝑥𝑥𝑥� − 𝑥𝑥𝑥𝑥 − 1 = 0.
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Low Floor High Ceiling Tasks

Keeping Things
in Proportion

The Midas Touch

In the last issue, we began a new series which was a compilation of ‘Low Floor
High Ceiling’ activities. A brief recap: an activity is chosen which starts by
assigning simple age-appropriate tasks which can be attempted by all the
students in the classroom. The complexity of the tasks builds up as the activity
proceeds so that each student is pushed to his or her maximum as they attempt
their work. There is enough work for all, but as the level gets higher, fewer
students are able to complete the tasks. The point, however, is that all students are
engaged and all of them are able to accomplish at least a part of the whole task.

Ouractivity this time is an investigation which
begins with the Fibonacci sequence. Throughout this
activity, students are called upon to exercise the skills of

observation, pattern recognition, mathematical notation and
communication and visualization. Along with this, there is an
opportunity to apply their understanding by using an algorithm
to generate the spreadsheet version of the sequence – though this
last is an optional addition. Their prior knowledge of arithmetic,
algebra and geometry is exercised and students are also able to
appreciate the connection between these areas. Students who
are more adept in one or the other of the three can work in their
comfort zone and gain con�idence to work on the others, thus the
teacher is able to assign work on exercising strengths and
addressing weaknesses. This task can be comfortably attempted
by students in grade 11 although the mathematically able in
grades 9 or 10, can also give it a shot. Intuitive pattern
recognition is the starting point of task 1. To attempt the tasks
students will need to know how to form algebraic expressions
�including the use of suf�ixes to denote the term in a particular
position). They should be familiar with the Pythagoras theorem

Keywords: pattern, algebra, Pythagoras, irrational, quadratic, roots, angle,
triangle, pentagon, ratio
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Figure 6. The case when 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is a non-isosceles
trapezium: the result is that 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is a cyclic

quadrilateral in which ∠𝐸𝐸𝐸𝐸 𝐹𝐹 ∠𝐸𝐸𝐸𝐸 𝐹𝐹 𝐹𝐹𝐹𝐹∘
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Figure 7. The case when 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 has ∠𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 but
∠𝐴𝐴𝐴𝐴 𝐴𝐴 ∠𝐴𝐴𝐴𝐴: the result is that 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is an isosceles

trapezium (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

Vol. 4, No. 1, March 2015 ∣ At Right Angles 3

A RAMACHANDRAN has had a long standing interest in the teaching of mathematics and science. He studied 
physical science and mathematics at the undergraduate level, and shifted to life science at the postgraduate 
level. He taught science, mathematics and geography to middle school students at Rishi Valley School for over 
two decades, and now stays in Chennai. His other interests include the English language and Indian music. He 
may be contacted at archandran.53@gmail.com.



31Vol. 4, No. 2, July 2015 | At Right Angles Vol. 4, No. 2, July 2015 | At Right Angles 31 31 At Right Angles | Vol. 4, No. 2, July 2015

and comfortable with the use of irrational numbers. The formula for the roots of a quadratic equation and
the properties of the angles of a triangle are also necessary prerequisites.
Each card (or set of cards) is a task which features a series of questions which build up in complexity.

Task 1

Consider the sequence 1, 1, 2, 3, 5, 8, 13, ………………
• What is the next term of this sequence?
• Generate the next 10 terms of this sequence.
• State in words how each new term is generated.
• Find an algebraic expression that expresses how each new term is generated.
• Find the ratio of each term to the preceding term. State your �inding.
• Do a similar investigation for the sequence 8, 10, 18, 28, 46, …………
• What is common between your �indings about the ratio in both these sequences?
• Choose any two natural numbers and generate the sequence in the same way. Do your �indings
change?

Teacher’s Note: Spreadsheets such as Excel can easily be used to generate the Fibonacci sequence. For a
complete description please refer to http:��teacherso�india.org�en�article�exploring-�ibonacci-
numbers-using-spreadsheet. This is also a great place to introduce students to a recursive formula for
generating a sequence.

Task 2

The golden ratio
• Consider the expression: 𝐹𝐹𝐹𝐹��� = 𝐹𝐹𝐹𝐹��� + 𝐹𝐹𝐹𝐹�……………………(1)
• We shall assume 𝐹𝐹𝐹𝐹� = 0 and 𝐹𝐹𝐹𝐹� = 1

If this expression is used to generate the Fibonacci sequence, state in words:
(i) What is 𝐹𝐹𝐹𝐹�?
(ii) Which equivalent expression describes the �ifth term?
(iii) What is meant by 𝐹𝐹𝐹𝐹�?
(iv) What does expression (1) mean?

• Using your observations regarding the Fibonacci sequence from task 1, what can you
conclude about the ratios ����

�� and ��
���� in the long run? Can we assume that after a certain

stage, ������ is nearly the same as ��
���� ?………(2)

• Using equations (1) and (2), we can conclude that �������
�� and ��

���� are ‘nearly the same’ after
a certain stage. Let us now replace ‘nearly the same’ by an equality sign. If ��

���� = 𝑥𝑥𝑥𝑥, then show
how this expression yields the equation �

� + 1 = 𝑥𝑥𝑥𝑥.
• Reduce this to the quadratic equation 𝑥𝑥𝑥𝑥� − 𝑥𝑥𝑥𝑥 − 1 = 0.
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Task 4

Constructing and investigating the speci�ied triangle.

• Construct ΔRPQ with sides QR= 1,PQ= RP= √���
� (Remember AB = √���

� = 𝑥𝑥𝑥𝑥 from Task 2).
• Extend RQ to S such that QS = AB. Join PS.

• Prove that RS = 𝑥𝑥𝑥𝑥�.
• Find the ratios ��

�� and ��
�� .

• Investigate ΔRPS and ΔRQP and note down your �indings, stating clearly all relationships
between sides and angles.

• Find ∡PSR and ∡RQP.
• If RS = 1 + 𝑥𝑥𝑥𝑥, explain in two different ways why PS = 𝑥𝑥𝑥𝑥�.

Teacher’s Note: Proving that RS = 𝑥𝑥𝑥𝑥� can be done either by using the exact value for 𝑥𝑥𝑥𝑥 or by using the
fact that it is the root of 1 + 𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥�. The SAS axiom is used to prove the similarity of the two triangles.
Once students note that both triangles PSQ and PQR are isosceles triangles, they can easily use the
properties of angles of a triangle (including exterior angle of a triangle) to �ind the required angles. They
will need to refer to the quadratic equation in Task 2 to justify their answer to the last question – the
teacher is strongly advised to give the students time to arrive at the result of the last question using both
properties of triangles as well as similarity. In doing this task, students are able to appreciate the
implications of results they have arrived at previously.
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• Find the solutions of this quadratic equation.
• What is the positive root of this equation?
• How is this root related to the ratios from the three different sequences in task 1?

Teacher’s Note: This task can be quite challenging for students who are not familiar with notations for
recursive relations. Careful facilitation by the teacher (particularly in helping them to express that the
(𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛�� term is the sum of the 𝑛𝑛𝑛𝑛�� and (𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛�� terms� will give the student con�idence to negotiate the
climb in this task.

Task 3

Constructing the number √���
�

• On a sheet of cardboard, construct a rectangle of length 2 inches and breadth 1 inch.
• Join one diagonal of this rectangle. What is the length of this diagonal? Show your calculation
and verify by measurement.

• Extend the diagonal by 1 inch outside the rectangle. Mark the mid-point B of the extended
diagonal and call this segment AB. Measure AB.

• From the construction, what is the exact measure of AB in inches?

Teacher’s Note: There are bene�its to doing this construction either with compass and ruler or with
dynamic geometry software such as GeoGebra. The teacher should in either case encourage students to
investigate and validate their �indings with careful reasoning. The teacher may need to explain to the
student that exact measurements may involve square roots and fractions. Also, whenever the measure of
AB is used the teacher must ensure that the student uses the constructed length from the �igure and not
the rounded-off approximation.
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Task 5

• On PR, construct ΔPRT congruent to ΔPQS as shown in the diagram.
• Calculate ∡TPS.
• Cut out the triangle TPS and trace its outline in your notebook. Now, place your outline over
the trace so that triangle PSQ is covered exactly by triangle PTR with P and T (of ΔPTR)
directly over S and Q (of ΔSQP) respectively. Extend your diagram by outlining your cutout.
Repeat this step until you get a closed �igure. �ou will notice that the acute angled triangle
alternates with the obtuse angled triangle.

• Identify the �inal shape.
• How is ∡TPS connected to this shape?
• What is the ratio of diagonal to side of this polygon?
• Observe a similar smaller polygon within the larger outer one. Express its diagonal in terms of 𝑥𝑥𝑥𝑥.

Teacher’s Note: Once the students complete the polygon, they should be able to see that it is a regular
pentagon and that there is a smaller regular pentagon created by its diagonals.
This investigation, which culminates in the creation of a regular pentagon, begins with a seemingly
unrelated investigation of number patterns. Using the strategy of guided discovery, students can
investigate numbers, algebra and geometry while practicing the skills of visualization, representation and
communication. It is precisely this route that enhances the construction of the pentagon – clearly the focus
is on the process and not on the product as the pentagon could just as well have been constructed in amore
direct manner. Here is a thought – it would be interesting to motivate students to design an investigation
which starts with a study of the pentagon and works backward to arrive at the golden triangle!

Vol. 4, No. 2, July 2015 ∣ At Right Angles 5



35Vol. 4, No. 2, July 2015 | At Right Angles Vol. 4, No. 2, July 2015 | At Right Angles 35 35 At Right Angles | Vol. 4, No. 2, July 2015

SWATI SIRCAR is Senior Lecturer and Resource Person at the University Resource Centre of Azim Premji 
University. Math is the second love of her life (1st being drawing). She has a B.Stat-M.Stat from Indian 
Statistical Institute and a MS in math from University of Washington, Seattle. She has been doing mathematics 
with children and teachers for more than 5 years and is deeply interested in anything hands on, origami in 
particular. She may be contacted at swati.sircar@apu.edu.in.

SNEHA TITUS a teacher of mathematics for the last twenty years has resigned from her full time teaching 
job in order to pursue her career goal of inculcating in students of all ages, a love of learning the logic 
and relevance of Mathematics. She works in the University Resource Centre of the Azim Premji Foundation. 
Sneha mentors mathematics teachers from rural and city schools and conducts workshops using the medium 
of small teaching modules incorporating current technology, relevant resources from the media as well as 
games, puzzles and stories which will equip and motivate both teachers and students. She may be contacted 
at sneha.titus@azimpremjifoundation.org

THE JOYS OF COMMUTATIVITY
THE JOYS OF COMMUTATIVITY

C
⊗

M αC

Here are two additions that yield the same sum:

987654321

087654321

007654321

000654321

000054321

000004321

000000321

000000021

+ 000000001

1083676269

123456789

123456780

123456700

123456000

123450000

123400000

123000000

120000000

+ 100000000

1083676269

The equality vividly illustrates the commutativity of multiplication: a×b = b×a. Do
you see how?

The example is taken from http://www.futilitycloset.com/2015/05/05/

math-notes-111/, where it is credited to Raymond F. Lausmann’s Fun With Figures,
1965.

1
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A similar situation arises in subtraction as well. But because of the variety of cases which arise, I have 
doubts on whether to teach or even demonstrate this to children. 

For division a right to left algorithm is not the most efficient one, as shown below.

To  

The Editors of At Right Angles, 

Sub: Division Pullout 

I was really looking forward to this pullout in particular because division is the most complex of all the four 
basic operations and a topic in which children encounter the most difficulty. But I felt that the pullout did 
not address the following issues adequately: 

1. Why do we proceed from left to right in division whereas all other operations proceed from right to 
left? 

2. What is the role of place value in the standard division algorithm? 
3. How do we estimate the quotient when the divisor has two or more digits? 

Points 1 and 2 are connected. The argument I use with students is that it is just a matter of efficiency. In 
the case of addition and subtraction, a left to right algorithm will not be efficient, as illustrated below.  

Left to right Right to left 

St
ep

 1
 

 T U 

We start by adding the tens.  

St
ep

 1
 

 T U 

We start by adding the units 
and write the units digit of the 
sum and the tens digit of the 
sum separately.  

 5 7  1  

+ 3 9  5 7 

 8  + 3 9 

       6 

St
ep

 2
 

 T U 

Next we add the units and write 
the unit digit of their sum and the 
tens digit of the sum separately. St

ep
 2

 

 T U 

In the 2nd step we add up all the 
tens. 

 1   1  

 5 7  5 7 

+ 3 9 + 3 9 

 8 6  9 6 

St
ep

 3
 

 T U 
So a 3rd step requires changing 
the already written digit in the 
tens place. 

Here we didn’t have to change any digit in the 
answer. 

 1  
 5 7 
+ 3 9 
 9 6 

 

A similar situation arises in subtraction as well. Because of the variety of cases which arise, I 
have doubts on whether to teach or even demonstrate this to children.  

For division a right to left algorithm is not the most efficient one, as shown below.  

 

 

 

 

 

 

 

 

 

Right to left  Left to right 

St
ep

 1
 

  T U Let’s start with the units, i.e. 
we divide 6 by 2 

 

St
ep

 1
 

  T U 
We start 
with the 
tens, i.e. we 
divide 3 by 
2 and we 
are left with 
1 ten 

   3   1  

2 ) 3 6 2 ) 3 6 

   6   2  

        1  

St
ep

 2
 

  T U 

Now we 
try to 
divide the 
3 tens 
We are 
left with 1 
ten 

St
ep

 2
 

  T U 
Now we 
exchange 
this ten to 
10 units and 
add the 6 
units from 
the dividend 

to get 16 units  
 

  1 3   1  

2 ) 3 6 2 ) 3 6 

   6   2  

  3    1 6 

  2      

  1      
St

ep
 3

 

  T U So we 
have to 
exchange 
this 
remaining 
ten into 10 
units 

Then we distribute these 10 
units 

 
∴ we have 
to 
increase 
the unit’s 
digit by 5 

i.e. change it from 3 to 3 + 5 
= 8 
 

St
ep

 3
 

  T U 

Now we 
divide these 
16 units by 2  
Here again 
we didn’t 
have to 

change any digit in the 
answer (or quotient). 

  1 8   1 8 

2 ) 3 6 2 ) 3 6 

   6   2  

  3    1 6 

  2    1 6 

  1 0     

  1 0     

Note: The exchange of units is not obvious in the algorithm and students benefit if the teacher 
demonstrates the conversion from tens to units by using material manipulatives such as flats and longs or 
bundles of ten. 

36 At Right Angles  | Vol. 4, No. 2, July 2015

in
 t

he
 c

la
ss

ro
om

Thoughts on the 
Division Operation

Swati Sircar

Notes from a Reader

Among the four basic arithmetical operations, division is easily 
the most complex, and it is the one with which children have 
the most difficulty. In this regard, I would like to share the 

following thoughts with readers on how division can be taught. They 
may be regarded as alternatives to the way division was presented in 
the pullout of an earlier issue. In particular, the following questions 
have been addressed:

1. Why do we proceed from left to right in division whereas all the 
other operations proceed from right to left?

2. What is the role of place value in the standard division 
algorithm?

3. How do we estimate the quotient when the divisor has two or 
more digits?

Points 1 and 2 are connected. The argument I use with students 
is that it is just a matter of efficiency. In the case of addition 
and subtraction, a left to right algorithm will not be efficient, as 
illustrated below.
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Note: The exchange of units is not obvious in the algorithm and students benefit if the teacher 
demonstrates the conversion from tens to units by using material manipulatives such as flats and longs or 
bundles of ten. 
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Point 3 is important since division is the only place where the standard algorithm requires estimation. 
For addition, subtraction and multiplication, no matter how large the numbers are, there is no need for 
estimation. 

The strategy is multi-pronged as rounding can go either way. So we need to start with 2 digit divisors and 
round them to the nearest tens in order to estimate. Naturally, it is a good idea to give children enough 
practice with divisors that are multiples of 10, e.g. 40, 70 etc., before going into general 2 digit divisors. 
Next, if the divisor is 62, we can round it to 60 and look for the highest multiples less than the dividend in 
each step. Similarly, if the divisor is 37, it should be rounded to 40. Of course, numbers ending in 5 like 85 
are always tricky – you can use either 80 or 90. It is also important to highlight here that the difference at 
each step should be less than the divisor. The estimation steps are as follows:

Estimation steps Example: 256 ÷ 36 Example: 256 ÷ 33 

1. Round off divisor to the nearest 
multiple of 10 

36 rounded off to 40 33 rounded off to 30 

2. Estimate quotient (or quotient digit) at 
that step using the estimate 

256 ÷ 40 (or 25 ÷ 4) ≈ 6 256 ÷ 30 (or 25 ÷ 3) ≈ 8 

3. Calculate quotient digit × actual 
divisor 

6 × 36 = 216 8 × 33 = 264 

4. Check  
a. if quotient digit × divisor > 

dividend: decrease quotient  
digit by 1 and repeat step 3 

b. if  not, proceed to check 
dividend – quotient digit × 
divisor > divisor: increase 
quotient  digit by 1 and repeat 
step 3 

c. If dividend – quotient digit × 
divisor ≤ divisor proceed to 
step 5 

Check:  
a. 216 < 256 
b. 256 – 216 = 40 > 36  

⇒ quotient = 6 + 1 = 7 
 
Go back to step 3 using 
7 as the quotient digit 

Check: 
a. 264 > 256 

⇒ quotient  digit= 8 – 
1 = 7 
 

Go back to step 3 using 7 
as the quotient digit 

5. Complete division step with the 
(modified) quotient 

7 × 36 = 252, i.e.  
256 ÷ 36 = 7 remainder 4 

7 × 33 = 231, i.e.  
256 ÷ 33 = 7 remainder 25 

 

I will be delighted if my contribution is published and welcome suggestions from readers who may contact 
me at swati.sircar@azimpremjifoundation.org.  
I welcome suggestions from readers.
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Note: The exchange of units is not obvious in the algorithm and students benefit if the teacher 
demonstrates the conversion from tens to units by using material manipulatives such as flats and longs or 

bundles of ten.

So if we show these to students or, even better, get them to work out both ways – left to right and right to 
left – and then reflect on the efficiency of each method, they will have a much better understanding of why 
the standard algorithms are the way they are.

I have tried to document how place value is invoked in the standard division algorithm with a detailed 
step by step demo of both long and short methods simultaneously showing 8643 ÷ 7 at  
http://teachersofindia.org/en/video/division-pay-attention.

When the division algorithm is taught, we generally use the shorter version of the division algorithm that 
violates the subtraction rules that a child has learnt. 
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Note: The exchange of units is not obvious in the algorithm and students benefit if the teacher 
demonstrates the conversion from tens to units by using material manipulatives such as flats and longs or 
bundles of ten. 
So if we show these to students or even better get them to work out both ways – left to right and right to 
left – and then reflect on the efficiency of each method, they will have a much better understanding of why 
the standard algorithms are the way they are. 

I have tried to document how place value is invoked in the standard division algorithm with a detailed step 
by step demo of both long and short methods simultaneously showing 8643 ÷ 7 at 
http://teachersofindia.org/en/video/division-pay-attention.  

When the division algorithm is taught, we generally use the shorter version of the division algorithm that 
violates the subtraction rules that a child has learnt.  
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Point 3 is important since division is the only place where the standard algorithm requires estimation. For 
addition, subtraction and multiplication, no matter how large the numbers are, there is no need for 
estimation.  

The strategy is multi-pronged as rounding can go either way. So we need to start with 2 digit divisors and 
round them to the nearest tens in order to estimate. Naturally, it is a good idea to give children enough 
practice with divisors that are multiples of 10, e.g. 40, 70 etc., before going into general 2 digit divisors. 
Next, if the divisor is 62, we can round it to 60 and look for the highest multiples less than the dividend in 
each step. Similarly, if the divisor is 37, it should be rounded to 40. Of course, numbers ending in 5 like 85 
are always tricky – you can use either 80 or 90. It is also important to highlight here that the difference at 
each step should be less than the divisor. The estimation steps are as follows: 
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Note: The exchange of units is not obvious in the algorithm and students benefit if the teacher 
demonstrates the conversion from tens to units by using material manipulatives such as flats and longs or 
bundles of ten. 



39Vol. 4, No. 2, July 2015 | At Right Angles 39Vol. 4, No. 2, July 2015 | At Right Angles

SWATI SIRCAR is Senior Lecturer and Resource Person at the University Resource Centre of Azim Premji 
University. Math is the second love of her life (1st being drawing). She has a B.Stat-M.Stat from Indian 
Statistical Institute and a MS in math from University of Washington, Seattle. She has been doing 
mathematics with children and teachers for more than 5 years and is deeply interested in anything hands 
on, origami in particular. She may be contacted at swati.sircar@apu.edu.in 

Point 3 is important since division is the only place where the standard algorithm requires estimation. 
For addition, subtraction and multiplication, no matter how large the numbers are, there is no need for 
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round them to the nearest tens in order to estimate. Naturally, it is a good idea to give children enough 
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are always tricky – you can use either 80 or 90. It is also important to highlight here that the difference at 
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multiple of 10 

36 rounded off to 40 33 rounded off to 30 
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that step using the estimate 

256 ÷ 40 (or 25 ÷ 4) ≈ 6 256 ÷ 30 (or 25 ÷ 3) ≈ 8 

3. Calculate quotient digit × actual 
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6 × 36 = 216 8 × 33 = 264 

4. Check  
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digit by 1 and repeat step 3 

b. if  not, proceed to check 
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step 5 

Check:  
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Go back to step 3 using 
7 as the quotient digit 

Check: 
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⇒ quotient  digit= 8 – 
1 = 7 
 

Go back to step 3 using 7 
as the quotient digit 

5. Complete division step with the 
(modified) quotient 

7 × 36 = 252, i.e.  
256 ÷ 36 = 7 remainder 4 

7 × 33 = 231, i.e.  
256 ÷ 33 = 7 remainder 25 

 

I will be delighted if my contribution is published and welcome suggestions from readers who may contact 
me at swati.sircar@azimpremjifoundation.org.  
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externally tangent to each other, the distance
between their centres equals the sum of their
radii.) Segment 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is both a median and an
altitude of △𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, and has length 1 − 𝑥𝑥𝑥𝑥 units
(because the perpendicular distance of 𝐶𝐶𝐶𝐶 from ℓ
is 1 unit, and the perpendicular distance of 𝐶𝐶𝐶𝐶 from
ℓ is 𝑥𝑥𝑥𝑥 units).
Now we apply the Pythagorean theorem to△𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,
which is right angled at 𝐶𝐶𝐶𝐶. We get:

1� + (1 − 𝑥𝑥𝑥𝑥𝑥𝑥� = (1 + 𝑥𝑥𝑥𝑥𝑥𝑥�
∴ 𝑥𝑥𝑥𝑥� − 2𝑥𝑥𝑥𝑥 + 2 = 𝑥𝑥𝑥𝑥� + 2𝑥𝑥𝑥𝑥 + 1𝑥𝑥

∴ 4𝑥𝑥𝑥𝑥 = 1𝑥𝑥

which yields 𝑥𝑥𝑥𝑥 = 1𝑥𝑥4. Thus, the baby has 1𝑥𝑥4 the
radius of the parents, as claimed.

The case of unequal radii
What happens if the two parent circles have
unequal radii? Let the parents have radii 𝑎𝑎𝑎𝑎 and 𝑏𝑏𝑏𝑏,
respectively (see Figure 3). Denote the radius of
the baby circle by 𝑐𝑐𝑐𝑐. We shall show that 𝑐𝑐𝑐𝑐 may be

found using the following elegant and symmetric
relationship:

1
√𝑐𝑐𝑐𝑐

= 1
√𝑎𝑎𝑎𝑎

+ 1
√𝑏𝑏𝑏𝑏

.

What we proved above is a particular case of this
formula; for if 𝑎𝑎𝑎𝑎 = 1 = 𝑏𝑏𝑏𝑏, then the formula gives
1𝑥𝑥√𝑐𝑐𝑐𝑐 = 2, so 𝑐𝑐𝑐𝑐 = 1𝑥𝑥𝑥.
To prove this we �irst solve an auxiliary problem
(see Figure 4):What is the length of the tangent
segment 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 on ℓ? We answer this by drawing the
segment 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 𝐵𝐵 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Then we have: 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   , 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  𝐴𝐴𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 𝐴𝐴, and now by the
theorem of Pythagoras:

𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵� = (𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏� − (𝐴𝐴𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� = 4𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏

which yields 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 = 2√𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏. Therefore, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2√𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏.
If we apply this result to the pairs of circles
{𝒦𝒦𝒦𝒦�𝑥𝑥𝒦𝒦𝒦𝒦�} and {𝒦𝒦𝒦𝒦�𝑥𝑥𝒦𝒦𝒦𝒦�}, we get:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2√𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   √𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐
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A Baby
One Quarter
the Size of its
Parents

InFigure 1 we see two ‘parent’ circles𝒦𝒦𝒦𝒦� and𝒦𝒦𝒦𝒦� of equal
radius tangent to a line ℓ, and a ‘baby’ circle𝒦𝒦𝒦𝒦� tangent to
𝒦𝒦𝒦𝒦�,𝒦𝒦𝒦𝒦� and ℓ; the baby has been held tight by its parents! We

shall show that the baby has one quarter the radius of its
parents. And the main result needed to prove this? It is an old
friend, the Pythagorean theorem.
Let the common radius of𝒦𝒦𝒦𝒦� and𝒦𝒦𝒦𝒦� be taken as 1 unit, and let
the radius of𝒦𝒦𝒦𝒦� be 𝑥𝑥𝑥𝑥 units. Let 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵 and 𝐶𝐶𝐶𝐶 denote the centres of
𝒦𝒦𝒦𝒦�,𝒦𝒦𝒦𝒦� and𝒦𝒦𝒦𝒦�, respectively (see Figure 2). Drawing the
segments connecting these points, we see that △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is
isosceles; the base 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 has length 1 + 1 = 2 units, while 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 and
𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 have length 1 + 𝑥𝑥𝑥𝑥 units each. (For, when two circles are
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externally tangent to each other, the distance
between their centres equals the sum of their
radii.) Segment 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is both a median and an
altitude of △𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, and has length 1 − 𝑥𝑥𝑥𝑥 units
(because the perpendicular distance of 𝐶𝐶𝐶𝐶 from ℓ
is 1 unit, and the perpendicular distance of 𝐶𝐶𝐶𝐶 from
ℓ is 𝑥𝑥𝑥𝑥 units).
Now we apply the Pythagorean theorem to△𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,
which is right angled at 𝐶𝐶𝐶𝐶. We get:

1� + (1 − 𝑥𝑥𝑥𝑥𝑥𝑥� = (1 + 𝑥𝑥𝑥𝑥𝑥𝑥�
∴ 𝑥𝑥𝑥𝑥� − 2𝑥𝑥𝑥𝑥 + 2 = 𝑥𝑥𝑥𝑥� + 2𝑥𝑥𝑥𝑥 + 1𝑥𝑥

∴ 4𝑥𝑥𝑥𝑥 = 1𝑥𝑥

which yields 𝑥𝑥𝑥𝑥 = 1𝑥𝑥4. Thus, the baby has 1𝑥𝑥4 the
radius of the parents, as claimed.

The case of unequal radii
What happens if the two parent circles have
unequal radii? Let the parents have radii 𝑎𝑎𝑎𝑎 and 𝑏𝑏𝑏𝑏,
respectively (see Figure 3). Denote the radius of
the baby circle by 𝑐𝑐𝑐𝑐. We shall show that 𝑐𝑐𝑐𝑐 may be

found using the following elegant and symmetric
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+ 1
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.

What we proved above is a particular case of this
formula; for if 𝑎𝑎𝑎𝑎 = 1 = 𝑏𝑏𝑏𝑏, then the formula gives
1𝑥𝑥√𝑐𝑐𝑐𝑐 = 2, so 𝑐𝑐𝑐𝑐 = 1𝑥𝑥𝑥.
To prove this we �irst solve an auxiliary problem
(see Figure 4):What is the length of the tangent
segment 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 on ℓ? We answer this by drawing the
segment 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 𝐵𝐵 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Then we have: 𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
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If we apply this result to the pairs of circles
{𝒦𝒦𝒦𝒦�𝑥𝑥𝒦𝒦𝒦𝒦�} and {𝒦𝒦𝒦𝒦�𝑥𝑥𝒦𝒦𝒦𝒦�}, we get:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2√𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   √𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐

K1

K2

K3

Figure 3.
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Since 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, we obtain:
2√𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃 𝑃√𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃 𝑃√𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏 (1)

On dividing through by 2√𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 we immediately
get the desired relation:

1
√𝑎𝑎𝑎𝑎

𝑃𝑃 1
√𝑎𝑎𝑎𝑎

𝑃𝑃 1
√𝑎𝑎𝑎𝑎

𝑏𝑏 (2)

For example, if 𝑎𝑎𝑎𝑎 𝑃𝑃 𝑃𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑏𝑏, then
𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎𝑐𝑐.
One can visualize an unending sequence of circles
being constructed in this way:
• a circle𝒦𝒦𝒦𝒦� enclosed by𝒦𝒦𝒦𝒦�,𝒦𝒦𝒦𝒦� and ℓ;
• a circle𝒦𝒦𝒦𝒦� enclosed by𝒦𝒦𝒦𝒦�,𝒦𝒦𝒦𝒦� and ℓ;
• a circle𝒦𝒦𝒦𝒦� enclosed by𝒦𝒦𝒦𝒦�,𝒦𝒦𝒦𝒦� and ℓ;
and so on.

As a special case of formula (2), we have the
following:

If 𝑎𝑎𝑎𝑎 𝑃𝑃 1
𝑚𝑚𝑚𝑚� and 𝑎𝑎𝑎𝑎 𝑎𝑎 1

𝑛𝑛𝑛𝑛� , then 𝑎𝑎𝑎𝑎 𝑎𝑎
1

(𝑚𝑚𝑚𝑚 𝑃𝑃 𝑃𝑃𝑃𝑃𝑚𝑚� . (3)

And here is a lovely consequence of (3) for which
we invite you to provide the complete �usti�ication:

If the radii of the initial two circles𝒦𝒦𝒦𝒦� and𝒦𝒦𝒦𝒦�
are 1𝑎𝑎𝑚𝑚𝑚𝑚� and 1𝑎𝑎𝑛𝑛𝑛𝑛� for some two integers𝑚𝑚𝑚𝑚 and
𝑛𝑛𝑛𝑛� then e�er� circle in this in�inite chain has a
radius of the form 1𝑎𝑎𝑝𝑝𝑝𝑝� for some integer 𝑝𝑝𝑝𝑝.

Figure 5 shows a few such circles. The
con�iguration ma�es for colourful pictures�

Figure 5. Circles galore
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Solution to the “Circle Challenge” SOLUTION TO THE “CIRCLE CHALLENGE”

C

A(0,0)

D(0,1)

B(1,0)

C(1,1)

K(a,b)
1−a

Let the plane be coordinatized so that the coordinates of the vertices A,B,C,D of the
square and the centre K of circle C are (0,0), (1,0), (1,1), (0,1) and (a,b), respectively.
Then the perpendicular distance from K to side BC is 1−a, hence the radius of C is 1−a.
Now we invoke the result that if two circles touch each other, the distance between their
centres is equal to the sum of their radii in the case of external contact, and the difference
between their radii in the case of internal contact. This yields KA = 1+(1− a) = 2− a

and KB = 1− (1−a) = a. Hence, using the distance formula:

a2
+b2

= (2−a)2,

(a−1)2
+b2

= a2.

Subtraction yields: a2
− (a− 1)2

= (2− a)2
− a2, giving 2a− 1 = 4− 4a, and 6a = 5.

Hence a = 5/6. It follows that the radius of the circle is 1/6.

— Adapted from solution submitted by Shri Tejash Patel of Patan, Gujarat.

SOLUTION TO THE “CIRCLE CHALLENGE”

C

A(0,0)

D(0,1)

B(1,0)

C(1,1)

K(a,b)
1−a

Let the plane be coordinatized so that the coordinates of the vertices A,B,C,D of the
square and the centre K of circle C are (0,0), (1,0), (1,1), (0,1) and (a,b), respectively.
Then the perpendicular distance from K to side BC is 1−a, hence the radius of C is 1−a.
Now we invoke the result that if two circles touch each other, the distance between their
centres is equal to the sum of their radii in the case of external contact, and the difference
between their radii in the case of internal contact. This yields KA = 1+(1− a) = 2− a

and KB = 1− (1−a) = a. Hence, using the distance formula:

a2
+b2

= (2−a)2,

(a−1)2
+b2

= a2.

Subtraction yields: a2
− (a− 1)2

= (2− a)2
− a2, giving 2a− 1 = 4− 4a, and 6a = 5.

Hence a = 5/6. It follows that the radius of the circle is 1/6.

— Adapted from solution submitted by Shri Tejash Patel of Patan, Gujarat.- Adapted from solution submitted by Tejash Patel of Patan, Gujarat.  
A similar solution was sent in by Adithya of BGS National Public School. Thanks to both our solvers!
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edges, thus making 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡. It had been
conjectured as a result of careful GeoGebra-based
experimentation that the ratio of areas is
𝑡𝑡𝑡𝑡𝑡𝑡3𝑡𝑡𝑡𝑡� 𝑡𝑡 3𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡. But the formula had not been
proved. We must check after completing our study
whether the formula we obtain reduces to the one
above for the case when 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡.
Let 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denote the ratio
Area (△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) ∶ Area (△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). We certainly expect
the following of 𝑓𝑓𝑓𝑓:
• 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡 𝑡𝑡 𝑡𝑡; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓 then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 coincide with
𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively, so 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide with
𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is identical with
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡 then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 coincide with
𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively, so 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide with
𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is identical with
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡, then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 lie at the
midpoints of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 respectively, which
means that 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 concur. Hence the points
𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 has zero area.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡. This is because replacing 𝑡𝑡𝑡𝑡
by 𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡 is essentially the same as replacing

△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 by △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and retaining the original
value of 𝑡𝑡𝑡𝑡.

The case when 𝐭𝐭𝐭𝐭 𝑡𝑡 𝐭𝐭𝐭𝐭𝑡𝑡𝐭𝐭𝐭𝐭. We start by studying the
case 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡3 in an ad hoc manner. Recall that the
starting point of Thomas Linge�ja� rd’s
investigation was this case; GeoGebra had
revealed the ratio of areas to be 𝑡𝑡 ∶ 7. We will now
show how the result can be obtained. We shall
draw inspiration from some of the ‘backward’
proofs of Morley’s theorem (one such—due to
John Conway—is given elsewhere in this very
issue of At Right Angles). What we shall do is to
start with the ‘inner’ △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, extend the �igure in
an appropriate way and construct a △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�

‘around’ it in a way that makes it visually obvious
that the area of △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is 7 times that of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Then we shall show that △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is congruent to
the given △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. This will complete the proof.
Figure 2 (a) shows the given con�iguration, and
Figure 2 (b) shows our construction: sides 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 are extended in a cyclic manner through
their own length to points 𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴�

respectively; that is, 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴� 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Then the segments 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� are
drawn. Let us �irst show that △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� has 7 times
the area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Join 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃, 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃. It is easy to see that the
seven triangles thus created all have exactly the
same area (we merely have to make repeated use
of the fact that amedian of a triangle divides it into
two parts with equal area). It follows immediately
that the area of △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is 7 times that of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Next, we extend sides 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to meet the
sides 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� at points 𝐷𝐷𝐷𝐷�, 𝐷𝐷𝐷𝐷�, 𝐷𝐷𝐷𝐷�

respectively (see Figure 3). We must show that 𝐷𝐷𝐷𝐷�,
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How to
Prove It
In this article we examine how to prove a result obtained after
careful GeoGebra experimentation. It was featured in the March
2015 issue of At Right Angles, in the ‘Tech Space’ section.

IIn the ‘Tech Space’ article in the March 2015 issue of At Right
Angles, Thomas Linge��a� rd had considered the problem of a
triangle drawn within a given triangle in a speci�ied manner,

and had wondered what could be said about the ratio of their
areas. We study this problem in depth here.

Triangle in a triangle
We are given an arbitrary △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Let 𝑡𝑡𝑡𝑡 be any number between 0
and 1. Locate points 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 on sides 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 respectively,
dividing them in the ratio 𝑡𝑡𝑡𝑡 𝑡𝑡 1 𝑡𝑡 𝑡𝑡𝑡𝑡. This is the same as saying that

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡

Let segments 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 be drawn. The three lines intersect and
demarcate a triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 within the larger triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. The
question now asked is: What is the ratio of the area of△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to
that of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴? In what way does this ratio depend on 𝑡𝑡𝑡𝑡? (See
Figure 1.)
Note that in asking for a formula for ‘the’ ratio, we seem to be
assuming implicitly that the ratio of areas does not depend in any
way on the shape of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; it depends only on 𝑡𝑡𝑡𝑡. In fact we shall
�ind that this is actually the case.
In Thomas Linge��a� rd’s original article, each side had been
divided into 2𝑛𝑛𝑛𝑛 𝑛𝑛 1 equal parts (for a variable positive integer 𝑛𝑛𝑛𝑛),
and the points 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 were the 𝑛𝑛𝑛𝑛-th points on their respective
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Figure 1.

edges, thus making 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡. It had been
conjectured as a result of careful GeoGebra-based
experimentation that the ratio of areas is
𝑡𝑡𝑡𝑡𝑡𝑡3𝑡𝑡𝑡𝑡� 𝑡𝑡 3𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡. But the formula had not been
proved. We must check after completing our study
whether the formula we obtain reduces to the one
above for the case when 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡.
Let 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denote the ratio
Area (△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) ∶ Area (△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). We certainly expect
the following of 𝑓𝑓𝑓𝑓:
• 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡 𝑡𝑡 𝑡𝑡; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓 then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 coincide with
𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively, so 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide with
𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is identical with
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡 then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 coincide with
𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively, so 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide with
𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is identical with
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡, then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 lie at the
midpoints of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 respectively, which
means that 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 concur. Hence the points
𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 has zero area.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡. This is because replacing 𝑡𝑡𝑡𝑡
by 𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡 is essentially the same as replacing

△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 by △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and retaining the original
value of 𝑡𝑡𝑡𝑡.

The case when 𝐭𝐭𝐭𝐭 𝑡𝑡 𝐭𝐭𝐭𝐭𝑡𝑡𝐭𝐭𝐭𝐭. We start by studying the
case 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡3 in an ad hoc manner. Recall that the
starting point of Thomas Linge�ja� rd’s
investigation was this case; GeoGebra had
revealed the ratio of areas to be 𝑡𝑡 ∶ 7. We will now
show how the result can be obtained. We shall
draw inspiration from some of the ‘backward’
proofs of Morley’s theorem (one such—due to
John Conway—is given elsewhere in this very
issue of At Right Angles). What we shall do is to
start with the ‘inner’ △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, extend the �igure in
an appropriate way and construct a △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�

‘around’ it in a way that makes it visually obvious
that the area of △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is 7 times that of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Then we shall show that △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is congruent to
the given △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. This will complete the proof.
Figure 2 (a) shows the given con�iguration, and
Figure 2 (b) shows our construction: sides 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 are extended in a cyclic manner through
their own length to points 𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴�

respectively; that is, 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴� 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Then the segments 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� are
drawn. Let us �irst show that △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� has 7 times
the area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Join 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃, 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃. It is easy to see that the
seven triangles thus created all have exactly the
same area (we merely have to make repeated use
of the fact that amedian of a triangle divides it into
two parts with equal area). It follows immediately
that the area of △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is 7 times that of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Next, we extend sides 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to meet the
sides 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� at points 𝐷𝐷𝐷𝐷�, 𝐷𝐷𝐷𝐷�, 𝐷𝐷𝐷𝐷�

respectively (see Figure 3). We must show that 𝐷𝐷𝐷𝐷�,
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been expressed in terms of the non-zero,
non-parallel vectors 𝐚𝐚𝐚𝐚 and 𝐜𝐜𝐜𝐜. Hence the above
principle applies (i.e., 𝐚𝐚𝐚𝐚 and 𝐜𝐜𝐜𝐜must bemixed in the
same proportions in ������𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and ������𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵), and we have:

1 − 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑘𝑘

1 − 𝑘𝑘𝑘𝑘 . (3)

This allows us to �ind the unknown �uantity 𝑘𝑘𝑘𝑘.
Cross-multiplying and solving for 𝑘𝑘𝑘𝑘, we get:

𝑘𝑘𝑘𝑘 = 1 − 𝑘𝑘𝑘𝑘
1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� . (4)

We have thus found the ratio 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Having
found this ratio, we easily deduce that

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 = 1 − 𝑘𝑘𝑘𝑘

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

We also know that 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘. From this it
follows that:

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑘

By multiplication we get:

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

Observe that in the formula the only independent
variable is 𝑘𝑘𝑘𝑘; there is no dependence on the shape
of the triangle! It follows that the very same
formula also gives the ratio of areas of △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and
△𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 to that of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. From this we deduce a
formula for 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡:

Area of △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 3 × 𝑘𝑘𝑘𝑘𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

This simpli�ies after a couple of steps to:

𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡2𝑘𝑘𝑘𝑘 𝑘𝑘 𝑡𝑡�
1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� . (5)

We have obtained the desired formula! We may
easily verify that it passes all the tests we had
listed: 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡 𝑡𝑡𝑡   𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡, 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑓𝑓 and
𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑡𝑡.
Let us also study whether our newly discovered
formula yields correct results. Let 𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘  (the
case with which Thomas Linge��a� rd had begun his
investigation). Let’s see what our formula gives:

𝑓𝑓𝑓𝑓 ���� =
�1− �

��
�

1− �
� 𝑡𝑡 �

�
=

�
�
�
�
= 1

7.

It has given the right result! More generally, for
the case 𝑘𝑘𝑘𝑘 𝑘 𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡2𝑡𝑡𝑡𝑡 𝑡𝑡 1𝑡𝑡we �ind, after some
simpli�ication, that

𝑓𝑓𝑓𝑓 𝑓 𝑡𝑡𝑡𝑡
2𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡� =

1
3𝑡𝑡𝑡𝑡� 𝑡𝑡 3𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡.

We have proved the experimentally discovered
formula. The reach of the vector approach is
indeed very impressive.
Remark. We remark in closing that other
treatments are possible, including those that use
nothing more sophisticated than the geometry of
similar triangles. We will feature one such
approach in the next issue.
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Figure 3.

𝐸𝐸𝐸𝐸�, 𝐹𝐹𝐹𝐹� are points of trisection of the sides 𝐵𝐵𝐵𝐵�𝐶𝐶𝐶𝐶�,
𝐶𝐶𝐶𝐶�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵� respectively, i.e., 𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷�/𝐵𝐵𝐵𝐵�𝐶𝐶𝐶𝐶� =
𝐶𝐶𝐶𝐶�𝐸𝐸𝐸𝐸�/𝐶𝐶𝐶𝐶�𝐴𝐴𝐴𝐴� = 𝐴𝐴𝐴𝐴�𝐹𝐹𝐹𝐹�/𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵� = 1/3. If we do this, then
the proof will be complete, for we will have simply
reproduced the original con�iguration�except
that we will have started from the ‘inside’ rather
than the ‘outside’.
This will follow from a comparison of areas. Let
𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷�/𝐷𝐷𝐷𝐷�𝐶𝐶𝐶𝐶� = 𝑘𝑘𝑘𝑘. Then the ratio of areas of △𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷�

and △𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶�𝐷𝐷𝐷𝐷� is also 𝑘𝑘𝑘𝑘, as is the ratio of areas of
△𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷� and △𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶�𝐷𝐷𝐷𝐷�. Hence, by subtraction, so
also is the ratio of areas of △𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵�𝑃𝑃𝑃𝑃 and △𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶�𝑃𝑃𝑃𝑃.
But a glance at Figure 2 (b) shows that the ratio of
areas of △𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵�𝑃𝑃𝑃𝑃 and △𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶�𝑃𝑃𝑃𝑃 is 2 ∶ 4 = 1 ∶ 2.
Hence 𝑘𝑘𝑘𝑘 = 1/2, implying that 𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷�/𝐵𝐵𝐵𝐵�𝐶𝐶𝐶𝐶� = 1/3. In
the same way we show that 𝐶𝐶𝐶𝐶�𝐸𝐸𝐸𝐸�/𝐶𝐶𝐶𝐶�𝐴𝐴𝐴𝐴� = 1/3 and
𝐴𝐴𝐴𝐴�𝐹𝐹𝐹𝐹�/𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵� = 1/3. This is just what we wished to
prove.
For another treatment of this problem, please
refer to the article Feynman’s Triangle: Some
Feedback and More by Prof Michael de Villiers,
available online at:
http://mysite.mweb.co.za/residents/profmd/
feynman.pdf.
The con�iguration we study here is referred to by
de Villiers as ‘Feynman’s Triangle.’
Finding a formula for 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 in the general case.
We now consider the general case and derive a
formula for 𝑓𝑓𝑓𝑓𝐟𝐟𝑓𝑓𝑓𝑓𝐟𝐟; we use vectors in our derivation.
We shall use a ‘subtraction logic’: we shall
subtract the areas of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, △𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 and △𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶
from that of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and thus obtain the area of
△𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. (See Figure 4.)
Let 𝐵𝐵𝐵𝐵 be treated as the origin, and let

������𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 𝐶 𝐵𝐵𝐵𝐵𝐵𝐵 ������𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 𝐴 𝐵𝐵𝐵𝐵𝐵𝐵
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Figure 4.

By construction we have
�������𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷  ������𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵 ������𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸  ������𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴  𝐟𝐟𝐵𝐵𝐵𝐵 𝐚𝐚 𝐵𝐵𝐵𝐵𝐟𝐟 𝐵𝐵
������𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹𝐹  ������𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵

Let 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷 . To �ind the unknown quantity 𝑘𝑘𝑘𝑘,
we argue as follows:

�������𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐷 ������𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴 �������𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷 𝐷𝐷𝐷 𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵

∴ ������𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃  �������𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  𝐴𝐴 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

∴ ������𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃 ������𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 𝐴𝐴 ������𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃    𝐴𝐴 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

We also have:
������𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸 𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐵𝐵𝐵𝐵𝐵𝐵

This is a consequence of the ‘section formula’. Now
consider the last two results we have obtained:

������𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵 (1)
������𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸 𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐵𝐵𝐵𝐵𝐵𝐵 (2)

To proceed further we make use of an important
yet simple result from vector algebra.

Suppose that 𝐮𝐮𝐮𝐮 and 𝐯𝐯𝐯𝐯 are two non-zero,
non-parallel vectors. Suppose further that for
some choice of non-zero real numbers 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 it
happens that 𝑎𝑎𝑎𝑎𝐮𝐮𝐮𝐮 𝐮𝐮 𝑎𝑎𝑎𝑎𝐯𝐯𝐯𝐯 is parallel to 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.
Then it must be that 𝑎𝑎𝑎𝑎 ∶ 𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎 ∶ 𝑎𝑎𝑎𝑎. In other
words, 𝐮𝐮𝐮𝐮 and 𝐯𝐯𝐯𝐯 are ‘mixed’ in the same
proportions in the two vectors.

The result holds provided that 𝐮𝐮𝐮𝐮 and 𝐯𝐯𝐯𝐯 are
non-zero and non-parallel (i.e., they ‘point in
different directions’; in linear algebra we say that
they are ‘linearly independent’). The proof is
based on the fact that a non-zero multiple of 𝐮𝐮𝐮𝐮 can
never be equal to a non-zero multiple of 𝐯𝐯𝐯𝐯.
Now consider the vectors ������𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 and ������𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸. They are
parallel, and in expressions (1) and (2) they have
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been expressed in terms of the non-zero,
non-parallel vectors 𝐚𝐚𝐚𝐚 and 𝐜𝐜𝐜𝐜. Hence the above
principle applies (i.e., 𝐚𝐚𝐚𝐚 and 𝐜𝐜𝐜𝐜must bemixed in the
same proportions in ������𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and ������𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵), and we have:

1 − 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑘𝑘

1 − 𝑘𝑘𝑘𝑘 . (3)

This allows us to �ind the unknown �uantity 𝑘𝑘𝑘𝑘.
Cross-multiplying and solving for 𝑘𝑘𝑘𝑘, we get:

𝑘𝑘𝑘𝑘 = 1 − 𝑘𝑘𝑘𝑘
1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� . (4)

We have thus found the ratio 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Having
found this ratio, we easily deduce that

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 = 1 − 𝑘𝑘𝑘𝑘

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

We also know that 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘. From this it
follows that:

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑘

By multiplication we get:

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

Observe that in the formula the only independent
variable is 𝑘𝑘𝑘𝑘; there is no dependence on the shape
of the triangle! It follows that the very same
formula also gives the ratio of areas of △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and
△𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 to that of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. From this we deduce a
formula for 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡:

Area of △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 3 × 𝑘𝑘𝑘𝑘𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

This simpli�ies after a couple of steps to:

𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡2𝑘𝑘𝑘𝑘 𝑘𝑘 𝑡𝑡�
1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� . (5)

We have obtained the desired formula! We may
easily verify that it passes all the tests we had
listed: 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡 𝑡𝑡𝑡   𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡, 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑓𝑓 and
𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑡𝑡.
Let us also study whether our newly discovered
formula yields correct results. Let 𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘  (the
case with which Thomas Linge��a� rd had begun his
investigation). Let’s see what our formula gives:

𝑓𝑓𝑓𝑓 ���� =
�1− �

��
�

1− �
� 𝑡𝑡 �

�
=

�
�
�
�
= 1

7.

It has given the right result! More generally, for
the case 𝑘𝑘𝑘𝑘 𝑘 𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡2𝑡𝑡𝑡𝑡 𝑡𝑡 1𝑡𝑡we �ind, after some
simpli�ication, that

𝑓𝑓𝑓𝑓 𝑓 𝑡𝑡𝑡𝑡
2𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡� =

1
3𝑡𝑡𝑡𝑡� 𝑡𝑡 3𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡.

We have proved the experimentally discovered
formula. The reach of the vector approach is
indeed very impressive.
Remark. We remark in closing that other
treatments are possible, including those that use
nothing more sophisticated than the geometry of
similar triangles. We will feature one such
approach in the next issue.
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The analysis used to derive the formula of the generated conic can be extended to determine its properties 
too.  And everyone knows how “doing” makes a better case for understanding and remembering than 
“reading” from a book (or board).

Generating the parabola
Part I of this two-part article focuses on the parabola, the simplest of the three conics. 

On a rectangular sheet of paper, consider one edge to be a line l. Mark a point P anywhere on the sheet, but 
not on l. Next, mentally select a point on l, fold that point to P, and neatly crease the paper along the fold. 
Repeat this for a new point on l, not far from the point just used. Repeat for a large number of points on l, 
moving only a small distance at each step. The resulting crease lines visibly give rise to a curve (which is 
best seen by holding up the sheet against the light). See Figure 1.

Figure 1 - Photo of paper being folded

Figure 2 - Photo of paper with creases, curve visible

What shape emerges from doing this? What is this curve?
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The conics include circle, ellipse, parabola, hyperbola and a pair 
of intersecting lines. The first and the last can be readily drawn 
on paper, but there are no constructions for the remaining three 

using compasses and straight edge. If one has to befriend (i.e., learn about, 
understand and ultimately develop some intuition based on practical 
knowledge) a shape, it is important to work with that shape. Paper folding 
(to be described presently) provided one such way to generate the three 
remaining conics on paper without much difficulty. 

Each of the three conics is generated by one simple fold carried out 
repeatedly. We fold a point on a straight line or a circle onto to a fixed 
point (not on the line or circle). As we vary the point along the line (or 
circle) we get different fold lines which form the envelope of a curve; this 
turns out to be a conic. By studying the way the folds are constructed, we 
can derive the equation of the conic. This repeated folding as a point varies 
along a line (or a circle) is a simple ‘low cost’ way of generating a locus 
without resorting to technology. It enables a student to get a glimpse of 
how a curve can be generated dynamically. 

Of Paper Folding, 
Geogebra and 
Conics 
It all began with two activities mentioned on page 19 of  
At Right Angles Vol.1, no. 2 November 2013, in the article 
“Axioms of Paper Folding”. Needless to say, I gave them a try 
and was rewarded by the first of the three conics that are 
part of every higher secondary syllabus – parabola, ellipse 
and hyperbola. With the help of “Mathematics through Paper 
Folding” by Alton T. Olson, I could connect a lot of properties of 
each with my paper models.

Swati Sircar

Keywords: paper folding, GeoGebra, conics, parabola, envelope, locus, focus, 
directrix.
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The analysis used to derive the formula of the generated conic can be extended to determine its properties 
too.  And everyone knows how “doing” makes a better case for understanding and remembering than 
“reading” from a book (or board).

Generating the parabola
Part I of this two-part article focuses on the parabola, the simplest of the three conics. 

On a rectangular sheet of paper, consider one edge to be a line l. Mark a point P anywhere on the sheet, but 
not on l. Next, mentally select a point on l, fold that point to P, and neatly crease the paper along the fold. 
Repeat this for a new point on l, not far from the point just used. Repeat for a large number of points on l, 
moving only a small distance at each step. The resulting crease lines visibly give rise to a curve (which is 
best seen by holding up the sheet against the light). See Figure 1.

Figure 1 - Photo of paper being folded

Figure 2 - Photo of paper with creases, curve visible

What shape emerges from doing this? What is this curve?
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4. Take any point Q on l

5. Get the perpendicular bisector of PQ

6. Use the Trace feature to generate the envelope 
similar to the folds

7. Move Q along l and observe the envelope 
obtained

8. Undo Trace 

9. Construct the line perpendicular to l through 
Q

10. Find the intersection between this line and the 
perpendicular bisector of PQ, i.e., Q'

11. Use the Trace feature on Q' to verify that Q' 
indeed is a point on the parabola 

the investigation rather than the technicalities of 
the activity. (Of course, some degree of familiarity 
with the software is mandatory.) In this instance, 
even working out the software equivalent of the 
physical act of paper folding is an instructive 
exercise. To give the command, the student needs 
to ask the questions:

• What is the outcome? That is, what “should” 
happen?

• What is the mathematical aspect to this 
physical activity? 

• How can I give this command?

For example, in order to replicate the steps Next, 
mentally select a point on l, fold that point to P and 
crease the paper along the fold, the student should 
arrive at the following answers:

• What is the outcome? The point on l should 
coincide with P after the folding.

• What is the mathematical aspect to this 
physical activity? P should be the image of 
the chosen point under reflection in the 
crease line. The crease on the paper is the 
mirror for the reflection of the point on l so 
that it coincides with P.

• How can I give this command? The crease 
is the perpendicular bisector of the line 
joining the point on l to P.

The tedium of shifting the point on l on the 
other hand is smooth sailing in GeoGebra with 
the use of sliders and the arrow key. Similarly, 
investigating the three other cases of the parabola 
becomes very simple with dynamic geometry 
software since it merely involves locating the line 
l differently (constructing it first above P and then 
to its right or left).

The activity can be replicated in GeoGebra with 
the following steps:

1. Take any point P on the positive y-axis

2. Reflect P in the x-axis to get P'

3. Get l parallel to the x-axis (or perpendicular to 
the y-axis) through P'

Figure 3: Steps 1-3: Marking the origin,  
the focus and the directrix

Figure 4: Steps 4−7: Getting the envelope  
of the parabola
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Clearly a parabola!
To do this experiment you can use any rectangular 
sheet of paper. We strongly recommend using 
discarded one-side-used print outs! The activity 
now proceeds from paper folding as shown above 
to get the curve (or rather the envelope of the 
curve) to the following:

1. Locating the exact point in each fold-line (or 
tangent to the curve) which belongs to (or lies 
on) the curve.

2. Cross-checking the construction with 
GeoGebra, plotting the actual conic and 
finding its formula.

3. Exploring the properties of the conic.

4. Deriving the calculations and generating the 
respective conic formula.

We start with the fold lines or creases. How are 
these fold lines related to the curve? They are 
tangents to the curve. Next we observe what the 
fold line is in terms of P and the point (say Q) 
on l: it is nothing but the perpendicular bisector 
of PQ. This is a simple application of the laws of 
reflection!

Next we try to guess the point on each tangent 
which is a point on the curve as well. Pick any 
point Q on l and draw the corresponding fold 
line. Draw a line perpendicular to l, through Q. 
Observe where this line intersects the fold line 
corresponding to Q; call this point Q'.

The curve is the locus of Q' as Q varies along l!

 

Why is this? 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′ =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′ by symmetry and the parabola is defined as the locus of all points equidistant 
from a given point and a given line. If we therefore define the given point 𝑃𝑃𝑃𝑃 as the focus and 
the given line 𝑙𝑙𝑙𝑙 as the directrix, then clearly 𝑃𝑃𝑃𝑃′ is equidistant from 𝑃𝑃𝑃𝑃 and 𝑙𝑙𝑙𝑙 and the locus of 
𝑃𝑃𝑃𝑃′ is the parabola which emerges from the creases.  

Now we will try to get the formula as follows:  Note that 𝑃𝑃𝑃𝑃′ is the midpoint of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 when 𝑃𝑃𝑃𝑃 is 
directly below 𝑃𝑃𝑃𝑃, take this point as the origin. Choose 𝑃𝑃𝑃𝑃 to be (0, 𝑎𝑎𝑎𝑎) and line 𝑙𝑙𝑙𝑙 to be 𝑦𝑦𝑦𝑦 = – 𝑎𝑎𝑎𝑎. 
A variable point on 𝑙𝑙𝑙𝑙 can be taken as (𝑞𝑞𝑞𝑞, −𝑎𝑎𝑎𝑎) with 𝑞𝑞𝑞𝑞 varying. Next, we calculate the equation 
of the fold line using the midpoint of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, the slope of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and the relation between slopes of 
perpendicular lines. This gives: 𝑦𝑦𝑦𝑦 = (𝑞𝑞𝑞𝑞/2𝑎𝑎𝑎𝑎) (𝑥𝑥𝑥𝑥 − 𝑞𝑞𝑞𝑞/2). 

The equation of the line through 𝑃𝑃𝑃𝑃 and perpendicular to 𝑙𝑙𝑙𝑙 is: 𝑥𝑥𝑥𝑥 = 𝑞𝑞𝑞𝑞. 

Hence the point of intersection is 𝑃𝑃𝑃𝑃′(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) where: 𝑥𝑥𝑥𝑥 = 𝑞𝑞𝑞𝑞, 𝑦𝑦𝑦𝑦 = 𝑞𝑞𝑞𝑞2/4𝑎𝑎𝑎𝑎. 

Hence the locus of the point of intersection is 𝑦𝑦𝑦𝑦 = 𝑥𝑥𝑥𝑥2/4𝑎𝑎𝑎𝑎 or 𝑥𝑥𝑥𝑥2 = 4𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦. This is the equation 
of a parabola the standard form obtained by choosing 𝑃𝑃𝑃𝑃 as (0, 𝑎𝑎𝑎𝑎) and 𝑙𝑙𝑙𝑙 as 𝑦𝑦𝑦𝑦 =  −𝑎𝑎𝑎𝑎. There 
are three other standard forms of the parabola: 𝑥𝑥𝑥𝑥2 = −4𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦, 𝑦𝑦𝑦𝑦2 = 4𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑦𝑦2 = −4𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥. 
These can be obtained by making specific choices of the point 𝑃𝑃𝑃𝑃 and line  .  For example, 
choosing 𝑃𝑃𝑃𝑃 as (𝑎𝑎𝑎𝑎, 0) and 𝑙𝑙𝑙𝑙 as 𝑥𝑥𝑥𝑥 =  −𝑎𝑎𝑎𝑎 leads to the standard form 𝑦𝑦𝑦𝑦2 = 4𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥. 

WORKING WITH GEOGEBRA 
GeoGebra is one of the best known Dynamic Geometry Software (DGS) packages available 
currently; it can be freely downloaded from http://www.geogebra.org/download. It proves 
to be invaluable for mathematical investigations.  

P

Q

Q'

Perpendicular 
bisector of PQ

Perpendicular 
to L at Q

Line L

Why is this?
PQ' = QQ' by symmetry and the parabola is defined 
as the locus of all points equidistant from a given 
point and a given line. If we therefore define the 
given point P as the focus and the given line l as 
the directrix, then clearly Q' is equidistant from 
P and l and the locus of Q' is the parabola which 
emerges from the creases. 

Now we will try to get the formula as follows:  
Note that Q' is the midpoint of PQ when Q is 
directly below P, take this point as the origin. 
Choose P to be (0, a) and line l to be y = –a.  
A variable point on l can be taken as (q, –a) with q 
varying. Next, we calculate the equation of the fold 
line using the midpoint of PQ, the slope of PQ and 
the relation between slopes of perpendicular lines. 
This gives: y = (q/2a) (x – q/2).

The equation of the line through Q and 
perpendicular to l is: x = q.

Hence the point of intersection is Q' (x, y) where:  
 x = q, y = q2/4a.

Hence the locus of the point of intersection is 
y = x2/4a or x2 = 4ay. This is the equation of a 
parabola the standard form obtained by choosing 
P as (0, a) and l as y = –a. There are three other 
standard forms of the parabola: x2 = –4ay, y2 

= 4ax and y2 = –4ax. These can be obtained by 
making specific choices of the point P and line. For 
example, choosing P as (a, 0) and l as x = –a leads 
to the standard form y2 = 4ax.

Working with GeoGebra
GeoGebra is one of the best known Dynamic 
Geometry Software (DGS) packages available 
currently; it can be freely downloaded from 
http://www.geogebra.org/download. It proves to 
be invaluable for mathematical investigations. 

While most students are comfortable with 
hands-on activities, the one being studied here 
involves repeated and careful folding which 
can get tedious. This can be eliminated with the 
use of technology. Patterns emerge quickly and 
can easily be viewed with the help of the ‘Trace’ 
button and the judicious use of colour. The 
student is thus able to focus on the mathematics of 
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4. Take any point Q on l

5. Get the perpendicular bisector of PQ

6. Use the Trace feature to generate the envelope 
similar to the folds

7. Move Q along l and observe the envelope 
obtained

8. Undo Trace 

9. Construct the line perpendicular to l through 
Q

10. Find the intersection between this line and the 
perpendicular bisector of PQ, i.e., Q'

11. Use the Trace feature on Q' to verify that Q' 
indeed is a point on the parabola 

the investigation rather than the technicalities of 
the activity. (Of course, some degree of familiarity 
with the software is mandatory.) In this instance, 
even working out the software equivalent of the 
physical act of paper folding is an instructive 
exercise. To give the command, the student needs 
to ask the questions:

• What is the outcome? That is, what “should” 
happen?

• What is the mathematical aspect to this 
physical activity? 

• How can I give this command?

For example, in order to replicate the steps Next, 
mentally select a point on l, fold that point to P and 
crease the paper along the fold, the student should 
arrive at the following answers:

• What is the outcome? The point on l should 
coincide with P after the folding.

• What is the mathematical aspect to this 
physical activity? P should be the image of 
the chosen point under reflection in the 
crease line. The crease on the paper is the 
mirror for the reflection of the point on l so 
that it coincides with P.

• How can I give this command? The crease 
is the perpendicular bisector of the line 
joining the point on l to P.

The tedium of shifting the point on l on the 
other hand is smooth sailing in GeoGebra with 
the use of sliders and the arrow key. Similarly, 
investigating the three other cases of the parabola 
becomes very simple with dynamic geometry 
software since it merely involves locating the line 
l differently (constructing it first above P and then 
to its right or left).

The activity can be replicated in GeoGebra with 
the following steps:

1. Take any point P on the positive y-axis

2. Reflect P in the x-axis to get P'

3. Get l parallel to the x-axis (or perpendicular to 
the y-axis) through P'

Figure 3: Steps 1-3: Marking the origin,  
the focus and the directrix

Figure 4: Steps 4−7: Getting the envelope  
of the parabola
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12. Using the Conics tool, generate the parabola 
using P and l

13. Verify that Q' really does move along the 
parabola

14. Now vary P along the y-axis and thereby verify 
the formula x2 = 4ay

Conclusion
Parabolas are encountered in many everyday 
contexts. For example, think of the path taken by a 
cricket ball when it has been hit for a ‘six’. Another 
example is the parabolic reflectors used in satellite 
dishes and car head lights. If you study the 
geometry of the folding process described above, 
you should be able prove the reflective property 
for yourself. 

By actually generating a parabola using paper-
folding and verifying its formula, students can 
understand its properties better and appreciate 
its multiple uses. The use of dynamic geometry 
software provides a second window for the study 
of the parabola and the use of two different media 
highlights different aspects of the same concept.  
Best of all, it caters to a variety of learners by 
playing to their strengths. What could be more 
enabling?

Figure 5: Steps 8-11: Finding the locus of the  
point of intersection
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Rectangle in a Triangle ...

When does it have 
Maximum Area?
		  A GeoGebra Exploration
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Rectangle in a Triangle …

When does it have
Maximum Area?

A GeoGebra Exploration

Problem. Let 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 be a triangle in which ∡𝐴𝐴𝐴𝐴 and ∡𝐴𝐴𝐴𝐴 are acute,
and let 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 be a rectangle inscribed in the triangle, with vertex
𝑃𝑃𝑃𝑃 on side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, vertices 𝑃𝑃𝑃𝑃 and 𝑃𝑃𝑃𝑃 on side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and vertex 𝑃𝑃𝑃𝑃 on side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(so 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). Find the maximum possible value of
the ratio of the area of rectangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to that of triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.
�bviously, in�initely many possibilities exist for the inscribed
rectangle, as Figure 1 suggests. Which of them hasmaximum area?
Solution. The problem is tailor-made for a “tech
investigation”! We invite you to use the applet available at
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Figure 1. Many rectangles inscribed in a triangle:
which has the largest area?

Keywords: triangle, rectangle, inscribed, area, maximum, ratio,
investigation, GeoGebra
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A Potpourri
of Problems

Wepresent once again a miscellaneous
collection of nice problems, followed
by their solutions. We state the

problems �irst so you have a chance to try them
out on your own.

Problems

(1) Find all positive integers which can be written
as the sum of the squares of some two
consecutive non-negative integers and also as
the sum of the fourth powers of some two
consecutive non-negative integers. In other
words, solve the equation

𝑚𝑚𝑚𝑚� + (𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚� = 𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑚𝑚𝑚𝑚�

over the non-negative integers ℕ�.
(2) Is there any positive rational number 𝑟𝑟𝑟𝑟 other

than 𝑚𝑚 such that 𝑟𝑟𝑟𝑟+ �
� is an integer?

(3) Determine the smallest prime that does not
divide any �ive-digit number whose digits are
in strictly increasing order.

[Regional Math Olympiad 2013]

(4) A “three-sum” integer 𝑛𝑛𝑛𝑛 is one that can be
expressed in the form 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑛𝑛, where
𝑛𝑛𝑛𝑛𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎 𝑛𝑛𝑛𝑛 are positive integers such that
𝑛𝑛𝑛𝑛 𝑎𝑎 𝑛𝑛𝑛𝑛 𝑎𝑎 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛 divides 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛 divides 𝑛𝑛𝑛𝑛. For
example, 7 is a three-sum by virtue of the
equality 𝑚𝑚 + 2 + 4 = 7. It is easy to see that
𝑚𝑚𝑚𝑚 2𝑎𝑎 3 are not three-sums. How many
non-three-sums are there?

[Adapted from the Indian National
Math Olympiad 2011]

Solutions

(1) Solve the equation
𝑚𝑚𝑚𝑚� + (𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚� = 𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑚𝑚𝑚𝑚� over the
non-negative integers.

Solution: As with so many such problems,
the tools that come handy here are the
“completing the square” technique and the
“difference of two squares” factorization.
(The lesson for you therefore is: always
be prepared to use these two humble
tools.)

Keywords: integer, square, fourth power, rational, prime, multiple,
composite, difference of squares, completing the square, Pythagoras, triple
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Figure 2. A ‘typical’ rectangle inscribed in a triangle

https://www.geogebratube.org/student/m140986
(or to write an applet of such a kind for yourself)
and arrive at a plausible answer.
In Figure 2, let 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 𝐵𝐵 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  𝐴𝐴𝐴𝐴. Let 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 be
the altitude through 𝐶𝐶𝐶𝐶 of △𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, and let its length
be ℎ; then the area of triangle 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is �

�𝐵𝐵𝐵𝐵𝐵.
Now, note that △𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is similar to △𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Let
𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  𝐴𝐴𝐴𝐴 (so 𝐴𝐴𝐴𝐴 is the coef�icient of similarity);

then 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴 as well. Thus, the
dimensions of △𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Hence, by
similarity, the altitude through 𝐶𝐶𝐶𝐶 of △𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 has
length 𝐴𝐴𝐴𝐴𝐴. It follows that 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝐵𝐵 𝐵 𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝑃𝑃𝑃𝑃 𝑃𝑃 𝐴𝐴𝐴𝐴𝑃𝑃ℎ.
Hence the area of rectangle 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 is 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
and the ratio of the area of rectangle 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 to that
of triangle 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is 2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴.
The function 2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴 is quadratic, and it is easy
to �ind its maximum value by simple algebra (no
calculus is needed). �e �ind that for 0 ≤ 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 , the
maximum value attained by 2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴 is �

� ,
attained when 𝐴𝐴𝐴𝐴 𝐴𝐴 �

� . Here is a proof:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴� 𝐵𝐵 𝑃𝑃
4 𝑃𝑃 𝑃𝑃𝑃4 𝑃𝑃 𝑃𝑃𝑃𝑃 𝑡𝑡 𝐴𝐴𝐴𝐴��

𝐵𝐵 𝑃𝑃
4 𝑃𝑃 𝑃𝑃𝑃2 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃

�
≤ 𝑃𝑃

4,

with equality just when 𝐴𝐴𝐴𝐴 𝐴𝐴 �
� . Hence

2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴  �
� , with equality just when 𝐴𝐴𝐴𝐴 𝐴𝐴 �

� .
So the maximum possible value of the ratio of the
area of rectangle𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 to that of triangle𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is �

� .
Is this what your GeoGebra exploration revealed
to you?
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A Potpourri
of Problems

Wepresent once again a miscellaneous
collection of nice problems, followed
by their solutions. We state the

problems �irst so you have a chance to try them
out on your own.

Problems

(1) Find all positive integers which can be written
as the sum of the squares of some two
consecutive non-negative integers and also as
the sum of the fourth powers of some two
consecutive non-negative integers. In other
words, solve the equation

𝑚𝑚𝑚𝑚� + (𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚� = 𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑚𝑚𝑚𝑚�

over the non-negative integers ℕ�.
(2) Is there any positive rational number 𝑟𝑟𝑟𝑟 other

than 𝑚𝑚 such that 𝑟𝑟𝑟𝑟+ �
� is an integer?

(3) Determine the smallest prime that does not
divide any �ive-digit number whose digits are
in strictly increasing order.

[Regional Math Olympiad 2013]

(4) A “three-sum” integer 𝑛𝑛𝑛𝑛 is one that can be
expressed in the form 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑛𝑛, where
𝑛𝑛𝑛𝑛𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎 𝑛𝑛𝑛𝑛 are positive integers such that
𝑛𝑛𝑛𝑛 𝑎𝑎 𝑛𝑛𝑛𝑛 𝑎𝑎 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛 divides 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛 divides 𝑛𝑛𝑛𝑛. For
example, 7 is a three-sum by virtue of the
equality 𝑚𝑚 + 2 + 4 = 7. It is easy to see that
𝑚𝑚𝑚𝑚 2𝑎𝑎 3 are not three-sums. How many
non-three-sums are there?

[Adapted from the Indian National
Math Olympiad 2011]

Solutions

(1) Solve the equation
𝑚𝑚𝑚𝑚� + (𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚� = 𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑚𝑚𝑚𝑚� over the
non-negative integers.

Solution: As with so many such problems,
the tools that come handy here are the
“completing the square” technique and the
“difference of two squares” factorization.
(The lesson for you therefore is: always
be prepared to use these two humble
tools.)

Keywords: integer, square, fourth power, rational, prime, multiple,
composite, difference of squares, completing the square, Pythagoras, triple
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expressed in the form 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, where
𝑛𝑛𝑛𝑛𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎 𝑛𝑛𝑛𝑛 are positive integers with 𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥, 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛 .
How many non-three-sum integers are there?
Solution: We claim that all numbers are
three-sums except 𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4𝑎𝑎 5𝑎𝑎 6𝑎𝑎 8𝑎𝑎 𝑎𝑎2𝑎𝑎 24. The
proof is as follows.

• If 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is a three-sum, then
the numbers 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 and
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑥𝑥 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 are composite. It
follows that if 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 or 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑥𝑥 is prime
for all feasible values of 𝑛𝑛𝑛𝑛, then 𝑛𝑛𝑛𝑛 is a
non-three-sum.

• Suppose 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is a
three-sum. Then 𝑛𝑛𝑛𝑛 𝑎𝑎 𝑥𝑥, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎 2, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎 4,
hence 𝑛𝑛𝑛𝑛 𝑎𝑎 𝑛𝑛. It follows that 𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4𝑎𝑎 5𝑎𝑎 6
are non-three-sums.

• If 𝑛𝑛𝑛𝑛 is a three-sum, so is anymultiple of 𝑛𝑛𝑛𝑛.
• If 𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥 is an odd number, then we can
write 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑥𝑥 𝑛𝑛 2 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 3𝑛𝑛. Hence all odd
numbers exceeding 6 are three-sums, as
are all multiples of these numbers.

• 8 is a non-three-sum. For, if
8 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, then 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 or 2. The
primality of 8 𝑛𝑛 𝑛𝑛 𝑛𝑛 𝑛𝑛 contradicts the
former, while the primality of
8𝑛𝑛2 𝑛𝑛 𝑛𝑛 𝑛𝑛 3 contradicts the latter.

• The equality 𝑥𝑥0 𝑛𝑛 𝑛𝑛 𝑛𝑛 3 𝑛𝑛 6 shows that
𝑥𝑥0 is a three-sum. Hence all multiples of
𝑥𝑥0 are three-sums.

• 𝑥𝑥2 is a non-three-sum. For, if
𝑥𝑥2 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, then 𝑛𝑛𝑛𝑛 is one of
𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4. The primality of 𝑥𝑥2 𝑛𝑛 𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛
contradicts the possibility 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛, the
primality of 𝑥𝑥2𝑛𝑛2 𝑛𝑛 𝑛𝑛 𝑛𝑛 5 contradicts
the possibility 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛, the primality of
𝑥𝑥2𝑛𝑛3 𝑛𝑛 𝑛𝑛 𝑛𝑛 3 contradicts the possibility
𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛, and similarly for 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛.

• The equality 𝑥𝑥6 𝑛𝑛 𝑛𝑛𝑛𝑛 5𝑛𝑛 𝑛𝑛0 shows that
𝑥𝑥6 is a three-sum. Hence all multiples of
𝑥𝑥6 are three-sums.

• 24 is a non-three-sum. For, if
24 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, then 𝑛𝑛𝑛𝑛 is one of
𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4𝑎𝑎 6. The primality of the numbers
24𝑛𝑛𝑛𝑛 𝑛𝑛 23, 24𝑛𝑛2𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛, 24𝑛𝑛3𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛,
24𝑛𝑛4 𝑛𝑛 𝑛𝑛 𝑛𝑛 5 and 24𝑛𝑛6 𝑛𝑛 𝑛𝑛 𝑛𝑛 3
contradict respectively the possibilities
𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛, 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛, 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛, 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛 and 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛.

• With the exception of 24, every number
from 𝑥𝑥5 to 30 is a three-sum, hence so is
every even number from 30 till 60
except possibly for 48. But this case is
settled by 48 𝑛𝑛 3 𝑛𝑛 9 𝑛𝑛 36. Hence every
number from 30 till 60 is a three-sum. By
repeated doubling it follows that every
even number beyond 24 is a three-sum.

• It follows that the only non-three-sums
are 𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4𝑎𝑎 5𝑎𝑎 6𝑎𝑎 8𝑎𝑎 𝑎𝑎2𝑎𝑎 24.

A Pythagorean connection
Now as promised we describe how while examining the expression 𝑟𝑟𝑟𝑟𝑛𝑛 �

� we are led to a way for
generating PPTs. We will only point out the connection and leave the proof to you. In the expression 𝑟𝑟𝑟𝑟𝑛𝑛 �

� ,
let us assign different rational values to 𝑟𝑟𝑟𝑟 and then let us examine the resulting value of the expression.
Here are a few such instances:

𝑟𝑟𝑟𝑟 𝑥𝑥
2

𝑥𝑥
3

𝑥𝑥
4

𝑥𝑥
5

2
3

3
4

3
5

4
5

𝑟𝑟𝑟𝑟 𝑛𝑛 𝑥𝑥
𝑟𝑟𝑟𝑟

5
2

𝑥𝑥0
3

𝑥𝑥𝑥𝑥
4

26
5

𝑥𝑥3
6

25
𝑥𝑥2

34
𝑥𝑥5

4𝑥𝑥
20

Do you see the connection? Here it is: If we halve each fraction in the last row, we obtain the hypotenuse
and one leg of an integer-sided right-angled triangle! We have copied the above array afresh with two
extra rows to make this clear.
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The equation yields on simpli�ication:
𝑚𝑚𝑚𝑚� +𝑚𝑚𝑚𝑚 𝑚𝑚 𝑚𝑚𝑚𝑚� + 2𝑚𝑚𝑚𝑚� + 3𝑚𝑚𝑚𝑚� + 2𝑚𝑚𝑚𝑚𝑛𝑛

∴ �𝑚𝑚𝑚𝑚 𝑚 1
2�

�
− 1
4 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚� + 𝑚𝑚𝑚𝑚 𝑚𝑚 𝑚� − 1

(on completing the square on both sides)

∴ 𝑋𝑋𝑋𝑋� − 1 𝑚𝑚 𝑌𝑌𝑌𝑌� − 4𝑛𝑛
where 𝑋𝑋𝑋𝑋 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚 𝑚𝑚  and 𝑌𝑌𝑌𝑌 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌  � + 𝑚𝑚𝑚𝑚 𝑚𝑚 𝑚𝑚𝑚

Hence 𝑌𝑌𝑌𝑌� − 𝑋𝑋𝑋𝑋� 𝑚𝑚 3.
Here 𝑋𝑋𝑋𝑋 and 𝑌𝑌𝑌𝑌 are positive integers. The only
expression for 3 as a difference of two squares
of positive integers is 3 𝑚𝑚 2� − 1� (this draws
from the fact that the only expression for 3 as a
product of two positive integers is 3 𝑚𝑚 3 × 1),
therefore (𝑌𝑌𝑌𝑌𝑛𝑛 𝑛𝑛𝑛𝑛𝑌𝑌 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚 𝑌𝑌, giving𝑚𝑚𝑚𝑚 𝑚𝑚 𝑚𝑚𝑚𝑚 𝑚𝑚 𝑚𝑚. So
the equation𝑚𝑚𝑚𝑚� + (𝑚𝑚𝑚𝑚 + 1𝑌𝑌� 𝑚𝑚 𝑚𝑚𝑚𝑚� + (𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 �
has only the trivial solution in which both𝑚𝑚𝑚𝑚
and 𝑚𝑚𝑚𝑚 are 𝑚𝑚. Hence the only positive integer
expressible in the form described is 1.

(2) Is there any positive rational number 𝑟𝑟𝑟𝑟 other
than 1 such that 𝑟𝑟𝑟𝑟+ �

� is an integer?

Solution: The answer to this is No. But in the
process of getting to the answer, we �ind an
unexpected and nice link between this
question and primitive Pythagorean triples!
Let 𝑟𝑟𝑟𝑟 𝑚𝑚 �

� where 𝑎𝑎𝑎𝑎𝑛𝑛 𝑎𝑎𝑎𝑎 are coprime positive
integers, and suppose that 𝑟𝑟𝑟𝑟 + �

� 𝑚𝑚 𝑚𝑚𝑚𝑚, a
positive integer. Then we have:

𝑟𝑟𝑟𝑟 + 1
𝑟𝑟𝑟𝑟 𝑚𝑚 𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎 𝑚𝑚 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 𝑚𝑚𝑚𝑚𝑛𝑛

∴ 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎� − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 𝑚𝑚𝑛𝑛
If 𝑎𝑎𝑎𝑎 𝑏𝑏 1 then there exists a prime 𝑝𝑝𝑝𝑝 dividing 𝑎𝑎𝑎𝑎.
The equality 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎� − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 𝑚𝑚 now shows
that 𝑝𝑝𝑝𝑝 divides 𝑎𝑎𝑎𝑎� and hence that 𝑝𝑝𝑝𝑝 divides 𝑎𝑎𝑎𝑎.
(This statement can be made precisely
because 𝑝𝑝𝑝𝑝 is prime.) But this means that 𝑎𝑎𝑎𝑎𝑛𝑛 𝑎𝑎𝑎𝑎
are not coprime. Hence there does not exist
such a prime 𝑝𝑝𝑝𝑝. What kind of value can 𝑎𝑎𝑎𝑎 take
if it is to be not divisible by any prime
number? Clearly we must have 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 .
The same reasoning applied to 𝑎𝑎𝑎𝑎 shows that
𝑎𝑎𝑎𝑎 𝑚𝑚 𝑚. Hence 𝑎𝑎𝑎𝑎 𝑚𝑚 𝑎𝑎𝑎𝑎 𝑚𝑚 𝑚, which means that
𝑟𝑟𝑟𝑟 𝑚𝑚 𝑚. This yields 𝑟𝑟𝑟𝑟 + �

� 𝑚𝑚 2, an integer. So
there is just one positive rational number 𝑟𝑟𝑟𝑟
for which 𝑟𝑟𝑟𝑟+ �

� is an integer, namely: 𝑟𝑟𝑟𝑟 𝑚𝑚 𝑚.

The connection with Pythagorean triples is
discussed below.

(3) Determine the smallest prime that does not
divide any �ive-digit number whose digits are in
strictly increasing order.

Solution: The total number of such numbers
is �inite� it is equal to (��𝑌𝑌 𝑚𝑚 126. For any
collection of 126 integers, there must exist
in�initely many primes that do not divide any
of the integers and hence there must exist a
smallest such prime.
Let’s see what this prime might be for the set
of �ive digit numbers whose digits are in
strictly increasing order. It cannot be 2, since
2 divides 12346. Nor can it be 3 or 5 since 3
and 5 divide 12345. How about 7?
Experimentation reveals that 7 divides
12348. So the answer is not any of 2𝑛𝑛 3𝑛𝑛 5𝑛𝑛 7.
How about 11? Trials reveal that 11 does not
divide any of 12345, 12346, 23456, 12347,
12348. We begin to suspect: maybe 11 is the
answer? It turns out to be, quite contrary to
our intuition. Here is the proof.
Let 𝑁𝑁𝑁𝑁 𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 be a �ive-digit base ten
number with 𝑚𝑚 < 𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎 < 1𝑚𝑚.
We shall show that 11 does not divide𝑁𝑁𝑁𝑁. For
this we must show that 11 does not divide
𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎. Now we have:
𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎 𝑚𝑚 𝑎𝑎𝑎𝑎+(𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎𝑌𝑌 𝑌𝑌 𝑎𝑎𝑎𝑎 𝑏𝑏 𝑏𝑏𝑏𝑏
On the other hand:
𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 𝑚𝑚 𝑎𝑎𝑎𝑎 − (𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑌𝑌 𝑌𝑌 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑌𝑌 𝑌 𝑎𝑎𝑎𝑎𝑛𝑛
So we have:

𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎𝑛𝑛
Hence𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎 is a single-digit non-zero
number and therefore is not a multiple of 11.
It follows that 𝑁𝑁𝑁𝑁 too is not a multiple of 11. So
11 is the sought-after prime number.

(4) A “three-sum” integer 𝑚𝑚𝑚𝑚 is one that can be
expressed in the form 𝑚𝑚𝑚𝑚 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚    , where
𝑎𝑎𝑎𝑎𝑛𝑛 𝑎𝑎𝑎𝑎𝑛𝑛 𝑎𝑎𝑎𝑎 are positive integers such that 𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎
and 𝑎𝑎𝑎𝑎 divides 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 divides 𝑎𝑎𝑎𝑎. How many
non-three-sums are there?

The de�inition may be re-stated as follows: a
positive integer 𝑚𝑚𝑚𝑚 is a three-sum if it can be
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expressed in the form 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, where
𝑛𝑛𝑛𝑛𝑎𝑎 𝑛𝑛𝑛𝑛𝑎𝑎 𝑛𝑛𝑛𝑛 are positive integers with 𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥, 𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛 .
How many non-three-sum integers are there?
Solution: We claim that all numbers are
three-sums except 𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4𝑎𝑎 5𝑎𝑎 6𝑎𝑎 8𝑎𝑎 𝑎𝑎2𝑎𝑎 24. The
proof is as follows.

• If 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is a three-sum, then
the numbers 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 and
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑥𝑥 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 are composite. It
follows that if 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 or 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑥𝑥 is prime
for all feasible values of 𝑛𝑛𝑛𝑛, then 𝑛𝑛𝑛𝑛 is a
non-three-sum.

• Suppose 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is a
three-sum. Then 𝑛𝑛𝑛𝑛 𝑎𝑎 𝑥𝑥, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎 2, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎 4,
hence 𝑛𝑛𝑛𝑛 𝑎𝑎 𝑛𝑛. It follows that 𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4𝑎𝑎 5𝑎𝑎 6
are non-three-sums.

• If 𝑛𝑛𝑛𝑛 is a three-sum, so is anymultiple of 𝑛𝑛𝑛𝑛.
• If 𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥 is an odd number, then we can
write 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑥𝑥 𝑛𝑛 2 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 3𝑛𝑛. Hence all odd
numbers exceeding 6 are three-sums, as
are all multiples of these numbers.

• 8 is a non-three-sum. For, if
8 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, then 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 or 2. The
primality of 8 𝑛𝑛 𝑛𝑛 𝑛𝑛 𝑛𝑛 contradicts the
former, while the primality of
8𝑛𝑛2 𝑛𝑛 𝑛𝑛 𝑛𝑛 3 contradicts the latter.

• The equality 𝑥𝑥0 𝑛𝑛 𝑛𝑛 𝑛𝑛 3 𝑛𝑛 6 shows that
𝑥𝑥0 is a three-sum. Hence all multiples of
𝑥𝑥0 are three-sums.

• 𝑥𝑥2 is a non-three-sum. For, if
𝑥𝑥2 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, then 𝑛𝑛𝑛𝑛 is one of
𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4. The primality of 𝑥𝑥2 𝑛𝑛 𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛
contradicts the possibility 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛, the
primality of 𝑥𝑥2𝑛𝑛2 𝑛𝑛 𝑛𝑛 𝑛𝑛 5 contradicts
the possibility 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛, the primality of
𝑥𝑥2𝑛𝑛3 𝑛𝑛 𝑛𝑛 𝑛𝑛 3 contradicts the possibility
𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛, and similarly for 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛.

• The equality 𝑥𝑥6 𝑛𝑛 𝑛𝑛𝑛𝑛 5𝑛𝑛 𝑛𝑛0 shows that
𝑥𝑥6 is a three-sum. Hence all multiples of
𝑥𝑥6 are three-sums.

• 24 is a non-three-sum. For, if
24 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, then 𝑛𝑛𝑛𝑛 is one of
𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4𝑎𝑎 6. The primality of the numbers
24𝑛𝑛𝑛𝑛 𝑛𝑛 23, 24𝑛𝑛2𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛, 24𝑛𝑛3𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛,
24𝑛𝑛4 𝑛𝑛 𝑛𝑛 𝑛𝑛 5 and 24𝑛𝑛6 𝑛𝑛 𝑛𝑛 𝑛𝑛 3
contradict respectively the possibilities
𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛, 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛, 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛, 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛 and 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛.

• With the exception of 24, every number
from 𝑥𝑥5 to 30 is a three-sum, hence so is
every even number from 30 till 60
except possibly for 48. But this case is
settled by 48 𝑛𝑛 3 𝑛𝑛 9 𝑛𝑛 36. Hence every
number from 30 till 60 is a three-sum. By
repeated doubling it follows that every
even number beyond 24 is a three-sum.

• It follows that the only non-three-sums
are 𝑥𝑥𝑥𝑥 2𝑎𝑎 3𝑎𝑎 4𝑎𝑎 5𝑎𝑎 6𝑎𝑎 8𝑎𝑎 𝑎𝑎2𝑎𝑎 24.

A Pythagorean connection
Now as promised we describe how while examining the expression 𝑟𝑟𝑟𝑟𝑛𝑛 �

� we are led to a way for
generating PPTs. We will only point out the connection and leave the proof to you. In the expression 𝑟𝑟𝑟𝑟𝑛𝑛 �

� ,
let us assign different rational values to 𝑟𝑟𝑟𝑟 and then let us examine the resulting value of the expression.
Here are a few such instances:

𝑟𝑟𝑟𝑟 𝑥𝑥
2

𝑥𝑥
3

𝑥𝑥
4

𝑥𝑥
5

2
3

3
4

3
5

4
5

𝑟𝑟𝑟𝑟 𝑛𝑛 𝑥𝑥
𝑟𝑟𝑟𝑟

5
2

𝑥𝑥0
3

𝑥𝑥𝑥𝑥
4

26
5

𝑥𝑥3
6

25
𝑥𝑥2

34
𝑥𝑥5

4𝑥𝑥
20

Do you see the connection? Here it is: If we halve each fraction in the last row, we obtain the hypotenuse
and one leg of an integer-sided right-angled triangle! We have copied the above array afresh with two
extra rows to make this clear.
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Problems for the
Middle School
Problem Editor : R. ATHMARAMAN

Problem IV-2-M.1
(a) Find the sum of the prime divisors of 2015.
(b) Find another number for which the sum of the
prime divisors is the same.
Problem IV-2-M.2
The sum of the digits of a natural number 𝑛𝑛𝑛𝑛 is
2015. Can 𝑛𝑛𝑛𝑛 be a perfect square?
Problem IV-2-M.3
Is there any �ive�digit perfect square such that
when 1 is added to each digit, the answer is again a
perfect square? (Youmay assume that the addition
of 1 to each digit starts from the units end and
proceeds ‘leftwards’. If the addition of 1 results in a
‘carry’, the ‘carry’ is added to the digit on the left.)
Problem IV-2-M.4
The sum of three integers is 0. Show that the sum
of their fourth powers when doubled yields a
perfect square.
Problem IV-2-M.5
Consider the following two relations:

𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 0𝑎𝑎 (1)

𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎�𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�𝑎𝑎𝑎𝑎�� � (2)

It is easy to prove (2) from (1) by simple
manipulation. Now the interesting thing is: while
identity (2) is symmetrical in 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎, condition (1)
is not so. How do you explain this?
Problem IV-2-M.6
Let 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 be two positive real numbers. Denote
their product 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 by 𝑃𝑃𝑃𝑃, and their sum 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 by 𝑆𝑆𝑆𝑆.
The following facts are known:
• If the sum 𝑆𝑆𝑆𝑆 is a constant, then the maximum
value of the product 𝑃𝑃𝑃𝑃 is �

�𝑆𝑆𝑆𝑆�.
• If the product 𝑃𝑃𝑃𝑃 is a constant, then the
minimum value of the sum 𝑆𝑆𝑆𝑆 is 2√𝑃𝑃𝑃𝑃.

�se these results to �ind the maximum and
minimum values taken by 𝑥𝑥𝑥𝑥�

1 + 𝑥𝑥𝑥𝑥� .

Problem IV-2-M.7
Given a parallelogram 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and a point 𝑃𝑃𝑃𝑃
inside the parallelogram such that ∡𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 and
∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are supplementary. Show that
∡𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

Keywords: digit, parity, integer, product, sum, multiple, divisibility, maximum, minimum,
parallelogram, supplementary, circle, chord
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PPT (3, 4, 5) (3, 4, 5) (8, 15, 17) (5, 12, 13) (5, 12, 13) (7, 24, 25) (8, 15, 17) (9, 40, 41)

Many questions arise from this display which could serve as the starting point of further investigations.
For example, we see that in some cases, two different 𝑟𝑟𝑟𝑟-values yield the same PPT: 12 and 1

3 ;
1
5 and 2

3 ; and
so on. What is the explanation governing this? We leave the investigation to the reader.
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Problems for the
Middle School
Problem Editor : R. ATHMARAMAN

Problem IV-2-M.1
(a) Find the sum of the prime divisors of 2015.
(b) Find another number for which the sum of the
prime divisors is the same.
Problem IV-2-M.2
The sum of the digits of a natural number 𝑛𝑛𝑛𝑛 is
2015. Can 𝑛𝑛𝑛𝑛 be a perfect square?
Problem IV-2-M.3
Is there any �ive�digit perfect square such that
when 1 is added to each digit, the answer is again a
perfect square? (Youmay assume that the addition
of 1 to each digit starts from the units end and
proceeds ‘leftwards’. If the addition of 1 results in a
‘carry’, the ‘carry’ is added to the digit on the left.)
Problem IV-2-M.4
The sum of three integers is 0. Show that the sum
of their fourth powers when doubled yields a
perfect square.
Problem IV-2-M.5
Consider the following two relations:

𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 0𝑎𝑎 (1)

𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎�𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�𝑎𝑎𝑎𝑎�� � (2)

It is easy to prove (2) from (1) by simple
manipulation. Now the interesting thing is: while
identity (2) is symmetrical in 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎, condition (1)
is not so. How do you explain this?
Problem IV-2-M.6
Let 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 be two positive real numbers. Denote
their product 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 by 𝑃𝑃𝑃𝑃, and their sum 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 by 𝑆𝑆𝑆𝑆.
The following facts are known:
• If the sum 𝑆𝑆𝑆𝑆 is a constant, then the maximum
value of the product 𝑃𝑃𝑃𝑃 is �

�𝑆𝑆𝑆𝑆�.
• If the product 𝑃𝑃𝑃𝑃 is a constant, then the
minimum value of the sum 𝑆𝑆𝑆𝑆 is 2√𝑃𝑃𝑃𝑃.

�se these results to �ind the maximum and
minimum values taken by 𝑥𝑥𝑥𝑥�

1 + 𝑥𝑥𝑥𝑥� .

Problem IV-2-M.7
Given a parallelogram 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and a point 𝑃𝑃𝑃𝑃
inside the parallelogram such that ∡𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 and
∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are supplementary. Show that
∡𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

Keywords: digit, parity, integer, product, sum, multiple, divisibility, maximum, minimum,
parallelogram, supplementary, circle, chord

Problems
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Figure 2.

parallelogram. But a cyclic parallelogram is a
rectangle, as its opposite angles are equal and add
up to 180∘. Hence 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are diameters of the
circle. So if 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are not diameters, the
stated situation is not possible. (Another proof:
Join the centre 𝑂𝑂𝑂𝑂 to𝑀𝑀𝑀𝑀. Then we have 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
and also 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, an impossibility if 𝑂𝑂𝑂𝑂 𝑂𝑂 𝑀𝑀𝑀𝑀.)
Solution to problem IV-1-M.6 A and B are two
boxes. Box A contains 100 white marbles, while box

B contains 100 black marbles. We take out 10
marbles at random from box A and put them
into box B. After this we take out 10marbles at
random from box B and put them in box A.
Which is now larger: the number of black
marbles in box A, or the number of white marbles
in box B?

The two numbers are equal.
Solution to problem IV-1-M.7 Let
𝑎𝑎𝑎𝑎�, 𝑎𝑎𝑎𝑎�, 𝑎𝑎𝑎𝑎�, … , 𝑎𝑎𝑎𝑎� represent the numbers 1, 2, 3, … , 𝑛𝑛𝑛𝑛
subjected to an arbitrary arrangement. Assume
that 𝑛𝑛𝑛𝑛 is odd. Consider the number
𝑋𝑋𝑋𝑋 𝑋𝑋 𝑋𝑋𝑎𝑎𝑎𝑎� − 1)𝑋𝑋𝑎𝑎𝑎𝑎� − 2)𝑋𝑋𝑎𝑎𝑎𝑎� − 3)… 𝑋𝑋𝑎𝑎𝑎𝑎� − 𝑛𝑛𝑛𝑛). Is 𝑋𝑋𝑋𝑋 even
or odd?

The sum of the numbers 𝑎𝑎𝑎𝑎� − 1, 𝑎𝑎𝑎𝑎� − 2, …, 𝑎𝑎𝑎𝑎� − 𝑛𝑛𝑛𝑛
is clearly 0, since the string 𝑋𝑋𝑎𝑎𝑎𝑎�, 𝑎𝑎𝑎𝑎�, 𝑎𝑎𝑎𝑎�, … , 𝑎𝑎𝑎𝑎�)
is a permutation of the string 𝑋𝑋1, 2, 3, … , 𝑛𝑛𝑛𝑛).
The sum of an odd number of odd numbers
cannot be 0; hence at least one of the numbers
𝑎𝑎𝑎𝑎� − 1, 𝑎𝑎𝑎𝑎� − 2, …, 𝑎𝑎𝑎𝑎� − 𝑛𝑛𝑛𝑛 is even. Hence 𝑋𝑋𝑋𝑋
is even.
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Solutions of Problems in Issue-IV-1 (March 2015)

Solution to problem IV-1-M.1 If the sum of the
reciprocals of three non-zero real numbers is zero,
can the sum of the three numbers be zero?

The answer is: No. Let the numbers be 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 (all
non-zero). Then 1/𝑎𝑎𝑎𝑎 𝑎𝑎 1/𝑎𝑎𝑎𝑎 𝑎𝑎 1/𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎, hence
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1/𝑎𝑎𝑎𝑎 𝑎𝑎 1/𝑎𝑎𝑎𝑎 𝑎𝑎 1/𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎. This leads to:
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 and then to:
𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎�. Since the right-hand
side of the last equality must be positive, so must
be the left-hand side, hence 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎.
Solution to problem IV-1-M.2 If 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 are
integers such that 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 are square
numbers, show that each of 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 is divisible by 3.
Let 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎� and 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎� where 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 are
integers. Then 𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎� 𝑎𝑎 3𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎which is a
multiple of 3. We �irst show that this implies that
both 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 are multiples of 3. If either one of
them is a multiple of 3, then so is the other one
too, clearly. If both 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 are non-multiples of 3,
then both 𝑎𝑎𝑎𝑎� and 𝑎𝑎𝑎𝑎� leave remainder 1 on division
by 3, hence 𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎� cannot be a multiple of 3. This
shows that both 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 are multiples of 3. Let
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑐𝑐𝑐𝑐 and 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑑𝑑𝑑𝑑 where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  are integers. Then
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑐𝑐𝑐𝑐� and 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑑𝑑𝑑𝑑�. Solving for 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
we get: 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎� − 𝑐𝑐𝑐𝑐�� and 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎� − 𝑑𝑑𝑑𝑑��.
This shows that both 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 are multiples of 3.
Solution to problem IV-1-M.3 Show that a power
of 𝑎𝑎 cannot be represented as a sum of two or more
consecutive positive integers.

Suppose that 𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 1𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎
where 𝑛𝑛𝑛𝑛𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 are positive integers. Here we have
written 𝑎𝑎� as a sum of 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎 consecutive positive
integers. Using the formula for the sum of an
arithmetic progression we get:

𝑎𝑎� 𝑎𝑎 number of terms × �irst term𝑎𝑎 last term
𝑎𝑎

𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎 𝑎𝑎

hence 𝑎𝑎��� 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎. Now consider the
integers 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎 and 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎. Both exceed 1. Their
sum is 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 1, which is an odd number.
Hence one of them is odd. This means that 𝑎𝑎���
has an odd divisor exceeding 1. But this is not
possible as 𝑎𝑎��� has no odd prime divisors. Hence
the equality is not possible.

Solution to problem IV-1-M.4 In △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, one of
the mid-segments is longer than one of its medians.
Show that△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is obtuse-angled. (A mid-segment
of a triangle is a segment joining the midpoints of
two sides of a triangle.)
It suf�ices to prove the following: If △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is
acute-angled, then its shortest median is longer
than its longest mid-segment. Suppose that △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
is acute-angled with 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 its longest side (see
Figure 1). This means that ∡𝐴𝐴𝐴𝐴 is the largest angle
of the triangle, but ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝑎𝑎𝑎𝑎∘. Let 𝐷𝐷𝐷𝐷 be the
mid-point of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Then 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 is its shortest median.
We must show that 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐴𝐴 �

�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, i.e., 𝑎𝑎𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.
Complete the parallelogram 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. We must show
that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, i.e., 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the longer diagonal. Note
that ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; this is so because the two
angles are supplementary but ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴∘
implying that ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝑎𝑎𝑎𝑎∘. Now consider △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
and △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. We have: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 but
∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝑎𝑎𝑎𝑎∘ 𝐴𝐴 ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. The cosine rule applied to
the two triangles now shows that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. (It
also follows from the inequality form of the SAS
congruence theorem.)
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Figure 1.

Solution to problem IV-1-M.5 Show that in any
circle, two non-diametrical chords cannot both
bisect each other.

Suppose that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are chords of a circle,
intersecting at a point𝑀𝑀𝑀𝑀 which is their common
midpoint (see Figure 2). Then 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 is a
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Figure 2.

parallelogram. But a cyclic parallelogram is a
rectangle, as its opposite angles are equal and add
up to 180∘. Hence 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are diameters of the
circle. So if 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are not diameters, the
stated situation is not possible. (Another proof:
Join the centre 𝑂𝑂𝑂𝑂 to𝑀𝑀𝑀𝑀. Then we have 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
and also 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, an impossibility if 𝑂𝑂𝑂𝑂 𝑂𝑂 𝑀𝑀𝑀𝑀.)
Solution to problem IV-1-M.6 A and B are two
boxes. Box A contains 100 white marbles, while box

B contains 100 black marbles. We take out 10
marbles at random from box A and put them
into box B. After this we take out 10marbles at
random from box B and put them in box A.
Which is now larger: the number of black
marbles in box A, or the number of white marbles
in box B?

The two numbers are equal.
Solution to problem IV-1-M.7 Let
𝑎𝑎𝑎𝑎�, 𝑎𝑎𝑎𝑎�, 𝑎𝑎𝑎𝑎�, … , 𝑎𝑎𝑎𝑎� represent the numbers 1, 2, 3, … , 𝑛𝑛𝑛𝑛
subjected to an arbitrary arrangement. Assume
that 𝑛𝑛𝑛𝑛 is odd. Consider the number
𝑋𝑋𝑋𝑋 𝑋𝑋 𝑋𝑋𝑎𝑎𝑎𝑎� − 1)𝑋𝑋𝑎𝑎𝑎𝑎� − 2)𝑋𝑋𝑎𝑎𝑎𝑎� − 3)… 𝑋𝑋𝑎𝑎𝑎𝑎� − 𝑛𝑛𝑛𝑛). Is 𝑋𝑋𝑋𝑋 even
or odd?

The sum of the numbers 𝑎𝑎𝑎𝑎� − 1, 𝑎𝑎𝑎𝑎� − 2, …, 𝑎𝑎𝑎𝑎� − 𝑛𝑛𝑛𝑛
is clearly 0, since the string 𝑋𝑋𝑎𝑎𝑎𝑎�, 𝑎𝑎𝑎𝑎�, 𝑎𝑎𝑎𝑎�, … , 𝑎𝑎𝑎𝑎�)
is a permutation of the string 𝑋𝑋1, 2, 3, … , 𝑛𝑛𝑛𝑛).
The sum of an odd number of odd numbers
cannot be 0; hence at least one of the numbers
𝑎𝑎𝑎𝑎� − 1, 𝑎𝑎𝑎𝑎� − 2, …, 𝑎𝑎𝑎𝑎� − 𝑛𝑛𝑛𝑛 is even. Hence 𝑋𝑋𝑋𝑋
is even.

Vol. 4, No. 1, March 2015 ∣ At Right Angles 3

Mathematician-economist John Nash, known for his work in a 
variety of fields including game theory, differential geometry and 
partial differential equations, died in May this year, along with his 
wife Alice Nash, in a freak car accident in New Jersey, USA.

John Nash received the Nobel Prize for economics in 1994 for 
his work in game theory which has subsequently had a profound 
impact in economics. (He shared the prize with two other game 
theorists. His work focused on the study of non-cooperative 
games and resulted in an important concept now known as Nash 
equilibrium.) This very year (2015), he was awarded the prestigious 
Abel prize for his work in nonlinear partial differential equations.

Nash is best known not only for his work in game theory, but 
also for the fact that he began to show signs of severe mental 
illness when he was about 30 years old (1959). The following 
decade was a period of intense struggle for him as he passed in 
and out of psychiatric hospitals, receiving numerous treatments. 
His symptoms began to abate as he grew older, and much later 
in his life he ascribed his recovery more to the natural process of 
ageing than to any treatment. His suffering during that period led 
to the writing of a Pulitzer prize-winning and bestselling book, 
A Beautiful Mind, by Sylvia Nasar, and later an award-winning 
Hollywood film by the same name, starring Russell Crowe.

Source: https://en.wikipedia.org/wiki/File:John_Forbes_Nash,_
Jr._by_Peter_Badge.jpg

JOHN NASH (1928-2015)
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Observe that 1 + 3 = 2� and therefore
3�� + 3���� = (3� × 2)�. Hence a possible
partition is:
𝐴𝐴𝐴𝐴 = 𝐴𝐴1𝐴𝐴 3𝐴𝐴𝐴𝐴𝐴𝐴3�𝐴𝐴 3�𝐴𝐴𝐴𝐴⋯𝐴𝐴𝐴𝐴3����𝐴𝐴 3����𝐴𝐴𝐴𝐴𝐴𝐴3����𝐴𝐴.

Solution to problem IV-1-S.2 Let 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 be a
triangle in which ∡𝐴𝐴𝐴𝐴 = 13𝐴𝐴∘. The perpendicular
to line 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐴𝐴𝐴𝐴 intersects side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐷𝐷𝐷𝐷, and the
bisector of ∡𝐴𝐴𝐴𝐴 intersects side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐸𝐸𝐸𝐸. Find the
measure of ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (see Figure 1).
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Figure 1.

Let 𝐼𝐼𝐼𝐼 on 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 be such that 𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴 bisects ∡𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Then
∡𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  𝐷𝐷𝐷𝐷∘ + �

�∡𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴∘, hence
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 𝐴𝐴 △𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷. It follows that ��

�� = ��
�� . Therefore

△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼 𝐴𝐴 △𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 as well. Since ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, we
infer that ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐵𝐵𝐴𝐴∘.

Solution to problem IV-1-S.3 Determine all pairs
(𝑛𝑛𝑛𝑛𝐴𝐴 𝑛𝑛𝑛𝑛) of positive integers such that

�𝑛𝑛𝑛𝑛� + 1� �𝑛𝑛𝑛𝑛� + 1� + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵     

The given e�pression simpli�ies to

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛)� + (𝑛𝑛𝑛𝑛 𝑛𝑛 2)� + (𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛� = 𝐴𝐴𝐴𝐴

hence (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛)�, (𝑛𝑛𝑛𝑛 𝑛𝑛 2)� and (𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛� are equal
to 𝐷𝐷, 1 and 𝐵𝐵, in some order. �y inspection we �ind
(𝑛𝑛𝑛𝑛𝐴𝐴 𝑛𝑛𝑛𝑛) = (2𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴𝐴.

Solution to problem IV-1-S.4 Determine all
irrational numbers 𝑥𝑥𝑥𝑥 such that both 𝑥𝑥𝑥𝑥� + 𝑥𝑥𝑥𝑥 and
𝑥𝑥𝑥𝑥� + 2𝑥𝑥𝑥𝑥� are integers.
Let 𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥� + 𝑥𝑥𝑥𝑥 and 𝑏𝑏𝑏𝑏 = 𝑥𝑥𝑥𝑥� + 2𝑥𝑥𝑥𝑥�. Then
𝑏𝑏𝑏𝑏 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  � = 𝑎𝑎𝑎𝑎 𝑛𝑛 𝑛𝑛𝑛𝑛, hence 𝑥𝑥𝑥𝑥(𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎     𝑎𝑎𝑎𝑎.
Since 𝑥𝑥𝑥𝑥 is an irrational number and 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏 are
integers, we deduce that 𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑏𝑏 𝑏𝑏 , and
therefore

𝑥𝑥𝑥𝑥 = 𝑛𝑛1 ± √𝐴𝐴
2 .

Solution to problem IV-1-S.5 Find all pairs (𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝)
of prime numbers, with 𝑛𝑛𝑛𝑛 𝑝𝑝 𝑝𝑝𝑝𝑝, such that
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛𝑛𝑛� + 𝑝𝑝𝑝𝑝��.
The equality can be written as
(𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �, which shows that 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝 are
unequal (if not, the right-hand side would be 𝐷𝐷
while the left-hand side is positive). The same
equation also shows that both 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝 are odd, for the
right-hand side is even and so therefore must be
the left-hand side, i.e., 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝 . Hence 3 𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝 𝑝𝑝𝑝𝑝.
Suppose that 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 . Since 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝 𝑝𝑝 𝐴𝐴, both 𝑛𝑛𝑛𝑛 and 𝑝𝑝𝑝𝑝
leave remainder 1 or 2when divided by 3. If 𝑛𝑛𝑛𝑛 and
𝑝𝑝𝑝𝑝 leave the same remainder when divided by 3,
then 3 divides the right-hand side, i.e., 2(𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �,
but not the left-hand side, i.e., 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝 . If 𝑛𝑛𝑛𝑛 and 𝑝𝑝𝑝𝑝
leave different remainders when divided by 3,
then 3 divides the left-hand side but not the
right-hand side. Hence it cannot be that 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 .
Therefore 𝑛𝑛𝑛𝑛 𝑝𝑝 𝐴𝐴. The only odd prime less than 𝐴𝐴 is
3, so 𝑛𝑛𝑛𝑛 𝑛𝑛 . The equation now yields
𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝   𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 �, which simpli�ies to
2𝑝𝑝𝑝𝑝� 𝑛𝑛 13𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝   , or (𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝   . This
yields 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝 . Hence 𝑛𝑛𝑛𝑛 𝑛𝑛  and 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝 .
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Problems for the
Senior School
Problem Editors : PRITHWIJIT DE & SHAILESH SHIRALI

Problem IV-2-S.1
Startingwith any three-digit number 𝑛𝑛𝑛𝑛we obtain a
new number 𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑓𝑓which is equal to the sum of the
three digits of 𝑛𝑛𝑛𝑛, their three products in pairs and
the product of all three digits. (Example: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓
𝑓𝑓𝑓𝑓 + 𝑓𝑓 + 𝑓𝑓𝑓𝑓 + 𝑓𝑓6 + 1𝑓𝑓 + 10𝑓𝑓 + 𝑓𝑓0 𝑓𝑓 71.) Find all
three-digit numbers such that 𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑓𝑓 𝑓𝑓 𝑛𝑛𝑛𝑛. [Adapted
from British Mathematical Olympiad, 1994]
Problem IV-2-S.2
Solve in integers the equation: 𝑥𝑥𝑥𝑥+𝑥𝑥𝑥𝑥 𝑓𝑓 𝑥𝑥𝑥𝑥�−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥+𝑥𝑥𝑥𝑥�.
Problem IV-2-S.3
Let 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐 be the lengths of the sides of a scalene
triangle and𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶 be the opposite angles. Prove that

𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴

Problem IV-2-S.4
Three positive real numbers 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐 are such that

𝑎𝑎𝑎𝑎� + 𝑓𝑓𝑏𝑏𝑏𝑏� + 4𝑐𝑐𝑐𝑐� − 4𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

Can 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐 be the lengths of the sides of a triangle?
Justify your answer. [Regional Mathematical
Olympiad, 2014]
Problem IV-2-S.5
Let 𝐷𝐷𝐷𝐷, 𝐸𝐸𝐸𝐸, 𝐹𝐹𝐹𝐹 be the points of contact of the incircle
of an acute-angled triangle 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 with the sides
𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 respectively. Let 𝐼𝐼𝐼𝐼�, 𝐼𝐼𝐼𝐼�, 𝐼𝐼𝐼𝐼� be the
incentres of the triangles 𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,
respectively. Prove that the lines 𝐼𝐼𝐼𝐼�𝐷𝐷𝐷𝐷, 𝐼𝐼𝐼𝐼�𝐸𝐸𝐸𝐸, 𝐼𝐼𝐼𝐼�𝐹𝐹𝐹𝐹
concur. [Adapted from the Regional
Mathematical Olympiad, 2014]

Solutions of Problems in Issue-IV-1 (March 2015)

Solution to problem IV-1-S.1 Let
𝐴𝐴𝐴𝐴 𝑓𝑓 𝐴𝐴1𝐴𝐴 𝑓𝑓𝐴𝐴 𝑓𝑓�𝐴𝐴 𝐴𝐴�𝐴𝐴 … 𝐴𝐴 𝐴𝐴����}. A partition of 𝐴𝐴𝐴𝐴 is a
union of non-empty disjoint subsets of 𝐴𝐴𝐴𝐴.
(a) Prove that there is no partition of 𝐴𝐴𝐴𝐴 such that

the product of all the elements in each subset is
a square.

Assume that such a partition exists. Then the
product of all elements of 𝐴𝐴𝐴𝐴must be a square
as well. But the product of all elements is equal
to 𝑓𝑓���������, which is not a square.

(b) Does there exist a partition of 𝐴𝐴𝐴𝐴 such that the
sum of elements in each subset is a square?

Keywords: digit, sum, product, triangle, sides, angles, incircle, partition
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Observe that 1 + 3 = 2� and therefore
3�� + 3���� = (3� × 2)�. Hence a possible
partition is:
𝐴𝐴𝐴𝐴 = 𝐴𝐴1𝐴𝐴 3𝐴𝐴𝐴𝐴𝐴𝐴3�𝐴𝐴 3�𝐴𝐴𝐴𝐴⋯𝐴𝐴𝐴𝐴3����𝐴𝐴 3����𝐴𝐴𝐴𝐴𝐴𝐴3����𝐴𝐴.

Solution to problem IV-1-S.2 Let 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 be a
triangle in which ∡𝐴𝐴𝐴𝐴 = 13𝐴𝐴∘. The perpendicular
to line 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐴𝐴𝐴𝐴 intersects side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐷𝐷𝐷𝐷, and the
bisector of ∡𝐴𝐴𝐴𝐴 intersects side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐸𝐸𝐸𝐸. Find the
measure of ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (see Figure 1).

A C

B

D

E

?

Figure 1.

Let 𝐼𝐼𝐼𝐼 on 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 be such that 𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴 bisects ∡𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Then
∡𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  𝐷𝐷𝐷𝐷∘ + �

�∡𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴∘, hence
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 𝐴𝐴 △𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷. It follows that ��

�� = ��
�� . Therefore

△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼 𝐴𝐴 △𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 as well. Since ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, we
infer that ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐵𝐵𝐴𝐴∘.

Solution to problem IV-1-S.3 Determine all pairs
(𝑛𝑛𝑛𝑛𝐴𝐴 𝑛𝑛𝑛𝑛) of positive integers such that

�𝑛𝑛𝑛𝑛� + 1� �𝑛𝑛𝑛𝑛� + 1� + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵     

The given e�pression simpli�ies to

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛)� + (𝑛𝑛𝑛𝑛 𝑛𝑛 2)� + (𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛� = 𝐴𝐴𝐴𝐴

hence (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛)�, (𝑛𝑛𝑛𝑛 𝑛𝑛 2)� and (𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛� are equal
to 𝐷𝐷, 1 and 𝐵𝐵, in some order. �y inspection we �ind
(𝑛𝑛𝑛𝑛𝐴𝐴 𝑛𝑛𝑛𝑛) = (2𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴𝐴.

Solution to problem IV-1-S.4 Determine all
irrational numbers 𝑥𝑥𝑥𝑥 such that both 𝑥𝑥𝑥𝑥� + 𝑥𝑥𝑥𝑥 and
𝑥𝑥𝑥𝑥� + 2𝑥𝑥𝑥𝑥� are integers.
Let 𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑥𝑥� + 𝑥𝑥𝑥𝑥 and 𝑏𝑏𝑏𝑏 = 𝑥𝑥𝑥𝑥� + 2𝑥𝑥𝑥𝑥�. Then
𝑏𝑏𝑏𝑏 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  � = 𝑎𝑎𝑎𝑎 𝑛𝑛 𝑛𝑛𝑛𝑛, hence 𝑥𝑥𝑥𝑥(𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎     𝑎𝑎𝑎𝑎.
Since 𝑥𝑥𝑥𝑥 is an irrational number and 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏 are
integers, we deduce that 𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑏𝑏 𝑏𝑏 , and
therefore

𝑥𝑥𝑥𝑥 = 𝑛𝑛1 ± √𝐴𝐴
2 .

Solution to problem IV-1-S.5 Find all pairs (𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝)
of prime numbers, with 𝑛𝑛𝑛𝑛 𝑝𝑝 𝑝𝑝𝑝𝑝, such that
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛    𝑛𝑛𝑛𝑛� + 𝑝𝑝𝑝𝑝��.
The equality can be written as
(𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �, which shows that 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝 are
unequal (if not, the right-hand side would be 𝐷𝐷
while the left-hand side is positive). The same
equation also shows that both 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝 are odd, for the
right-hand side is even and so therefore must be
the left-hand side, i.e., 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝 . Hence 3 𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝 𝑝𝑝𝑝𝑝.
Suppose that 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 . Since 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝 𝑝𝑝 𝐴𝐴, both 𝑛𝑛𝑛𝑛 and 𝑝𝑝𝑝𝑝
leave remainder 1 or 2when divided by 3. If 𝑛𝑛𝑛𝑛 and
𝑝𝑝𝑝𝑝 leave the same remainder when divided by 3,
then 3 divides the right-hand side, i.e., 2(𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �,
but not the left-hand side, i.e., 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝 . If 𝑛𝑛𝑛𝑛 and 𝑝𝑝𝑝𝑝
leave different remainders when divided by 3,
then 3 divides the left-hand side but not the
right-hand side. Hence it cannot be that 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 .
Therefore 𝑛𝑛𝑛𝑛 𝑝𝑝 𝐴𝐴. The only odd prime less than 𝐴𝐴 is
3, so 𝑛𝑛𝑛𝑛 𝑛𝑛 . The equation now yields
𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝   𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 �, which simpli�ies to
2𝑝𝑝𝑝𝑝� 𝑛𝑛 13𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝   , or (𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝   . This
yields 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝 . Hence 𝑛𝑛𝑛𝑛 𝑛𝑛  and 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝 .
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R Ramanujam

Such ignorance and intellectual laziness has come 
under question in the last couple of decades, and 
at least in the corners inhabited by historians of 
mathematics, the Euro-centric account is being 
interrogated now. The book under review, first 
published in 1991, contributed in no small way to 
this change of perspective and was tremendously 
influential in causing the shift. By now it has seen 
three editions and is yet relevant, especially in the 
Indian context, where it has become fashionable to 
talk of deep mathematical knowledge in ‘ancient 
India’ without factual basis. Keeping a clear view 
of history while yet not buying in entirely to the 
Euro-centric account, is important for opening 
our minds to historical progressions of ideas, an 
integral component of learning.

The central aims of the book (from Chapter 1) are, 
to highlight:

1. “the global nature of mathematical pursuits of 
one kind or another,

2. the possibility of independent mathematical 
development within each cultural tradition 
followed or not followed by cross-fertilization,

3. the crucial importance of diverse 
transmissions of mathematics across cultures, 
culminating in the creation of the unified 
discipline of modern mathematics”. 

George Joseph does a remarkable job of 
addressing these aims, and takes us through 
a fascinating journey of mathematics in non-
European cultures, principally the Asian ones.

Content
The book opens with a discussion of the Euro-
centric picture dominant in the history of 
mathematics, its critique and the necessity to 
view mathematical development in many cultures 
of the world, and transmissions between them. 
Then the author gives a brief account of pre-
historic mathematics, such as those found in the 
Ishinga Bone, the mathematics of the Incas and 
the Mayans, and the development of number 
systems. (Interestingly, some authors have raised 
serious questions on mathematical inference 
from Ishinga bones, Asolom’s wolf bones and 
such. See The fables of Ishango, or the irresistible 

temptation of mathematical fiction, Olivier Keller, 
Préhistoire de l’arithmetique, Feb 2015.) An 
important discussion here is on mathematics in 
Africa, especially geometric designs: very brief, 
but pointing to an area not generally discussed.

Chapters 3 and 4 discuss mathematics from Egypt 
and Mesopotamia and Chapter 5 is an ‘assessment’ 
of these two. Joseph presents an illuminating 
picture of the empiricist and algebraic tradition 
prevalent in Egypt and Babylonia. Since the 
Greeks had extensive interaction with these 
societies, Joseph makes a case for how a synthesis 
of the deductive and geometric tradition of 
Greece with this algebraic approach might have 
led to the powerful mathematics that emerged, 
especially in the works of Archimedes, Ptolemy 
and Diophantus.

Many of the examples presented of Egyptian 
and Babylonian mathematics have their origins 
in people’s work, on the empirical need for 
calculation. For instance, calculate the number of 
persons needed to move an obelisk. The modeling 
needs of such tasks and their subsequent 
abstraction, seems to have led to interesting 
mathematical constructions. Studying these 
can be inspiring for today’s students, relating 
to similar tasks in today’s world. The tasks are 
largely arithmetical and measurement oriented, 
and involving basic algebra, all accessible to a 
child in middle school. There are also algorithms 
from Mesopotamia like the one for extraction of 
square roots, but it is not clear how different and 
enriching they are.

For shock value, consider the following problem 
(Example 4.5, Chapter 4): Calculate how long it 
would take for a certain amount of money to double 
if it has been loaned at a compound annual rate of 
20%. You expect to see this in current day high 
school texts. This is from the Louvre tablets of 
the Old Babylonian Period, approximately 1500 
BC. Here is another, from the Susa tablets of the 
Old Babylonian Period (Example 4.11, Chapter 
4): Find the circumradius of a triangle whose sides 
are 50, 50, and 60. It is this problem that leads 
Joseph to assert: “there can be little doubt that the 
Mesopotamians knew and used the Pythagorean 
theorem.” Be that as it may, it would be instructive 
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Background
If we made contact with an alien civilization, what would we 
communicate with them, and how? Lacking a common language, how 
can we expect to make sense at all? Many thinkers have pondered 
this and among all their divergent views, one thread is common: 
the language of mathematics presents the best possibility for such 
communication. For instance, sending the sequence of primes 
expressed in base one (unary) may be a good idea.

What is the conviction that underlies such a suggestion? We believe 
that mathematical pursuit of some kind is generic to intelligence and 
sapience, therefore we expect and look for mathematical pursuits in 
all civilizations. But then, each civilization and cultural tradition may 
develop mathematics independently and in its own way, so while 
communication of what is basic and fundamental may yet be possible, 
that of sophisticated technique may be hard.

This is an easy argument to accept, and yet hard to internalize in a way 
that informs our practice, especially of the teaching of mathematics. 
We have a picture of mathematics as a modern discipline, and trace 
its roots to ancient Greece and the European Renaissance, absorbing 
the vacuum in between, but fail to ask what other trajectories of  
mathematical development might have taken place in other cultures, 
especially during these “dark ages”. The ‘we’ here includes historians 
and practitioners of mathematics, all over the world.

“The Crest of the 
Peacock: Non-
European Roots
of Mathematics” 

R Ramanujam

By George Gheverghese Joseph

Review of
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Such ignorance and intellectual laziness has come 
under question in the last couple of decades, and 
at least in the corners inhabited by historians of 
mathematics, the Euro-centric account is being 
interrogated now. The book under review, first 
published in 1991, contributed in no small way to 
this change of perspective and was tremendously 
influential in causing the shift. By now it has seen 
three editions and is yet relevant, especially in the 
Indian context, where it has become fashionable to 
talk of deep mathematical knowledge in ‘ancient 
India’ without factual basis. Keeping a clear view 
of history while yet not buying in entirely to the 
Euro-centric account, is important for opening 
our minds to historical progressions of ideas, an 
integral component of learning.

The central aims of the book (from Chapter 1) are, 
to highlight:

1. “the global nature of mathematical pursuits of 
one kind or another,

2. the possibility of independent mathematical 
development within each cultural tradition 
followed or not followed by cross-fertilization,

3. the crucial importance of diverse 
transmissions of mathematics across cultures, 
culminating in the creation of the unified 
discipline of modern mathematics”. 

George Joseph does a remarkable job of 
addressing these aims, and takes us through 
a fascinating journey of mathematics in non-
European cultures, principally the Asian ones.

Content
The book opens with a discussion of the Euro-
centric picture dominant in the history of 
mathematics, its critique and the necessity to 
view mathematical development in many cultures 
of the world, and transmissions between them. 
Then the author gives a brief account of pre-
historic mathematics, such as those found in the 
Ishinga Bone, the mathematics of the Incas and 
the Mayans, and the development of number 
systems. (Interestingly, some authors have raised 
serious questions on mathematical inference 
from Ishinga bones, Asolom’s wolf bones and 
such. See The fables of Ishango, or the irresistible 

temptation of mathematical fiction, Olivier Keller, 
Préhistoire de l’arithmetique, Feb 2015.) An 
important discussion here is on mathematics in 
Africa, especially geometric designs: very brief, 
but pointing to an area not generally discussed.

Chapters 3 and 4 discuss mathematics from Egypt 
and Mesopotamia and Chapter 5 is an ‘assessment’ 
of these two. Joseph presents an illuminating 
picture of the empiricist and algebraic tradition 
prevalent in Egypt and Babylonia. Since the 
Greeks had extensive interaction with these 
societies, Joseph makes a case for how a synthesis 
of the deductive and geometric tradition of 
Greece with this algebraic approach might have 
led to the powerful mathematics that emerged, 
especially in the works of Archimedes, Ptolemy 
and Diophantus.

Many of the examples presented of Egyptian 
and Babylonian mathematics have their origins 
in people’s work, on the empirical need for 
calculation. For instance, calculate the number of 
persons needed to move an obelisk. The modeling 
needs of such tasks and their subsequent 
abstraction, seems to have led to interesting 
mathematical constructions. Studying these 
can be inspiring for today’s students, relating 
to similar tasks in today’s world. The tasks are 
largely arithmetical and measurement oriented, 
and involving basic algebra, all accessible to a 
child in middle school. There are also algorithms 
from Mesopotamia like the one for extraction of 
square roots, but it is not clear how different and 
enriching they are.

For shock value, consider the following problem 
(Example 4.5, Chapter 4): Calculate how long it 
would take for a certain amount of money to double 
if it has been loaned at a compound annual rate of 
20%. You expect to see this in current day high 
school texts. This is from the Louvre tablets of 
the Old Babylonian Period, approximately 1500 
BC. Here is another, from the Susa tablets of the 
Old Babylonian Period (Example 4.11, Chapter 
4): Find the circumradius of a triangle whose sides 
are 50, 50, and 60. It is this problem that leads 
Joseph to assert: “there can be little doubt that the 
Mesopotamians knew and used the Pythagorean 
theorem.” Be that as it may, it would be instructive 
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brief chapter has enough material to interest every mathematics teacher in India. The work
of Ibn al-Haytham (965–1039), al-Biruni (973–1051), Omar Khayyam (1048–1126), and
al-Kashi (1429) are important. Of these, Omar Khayyam is famous as a poet, but he was
also a first-rate mathematician who propounded a geometric theory of cubic equations
and tried (unsuccessfully) to derive the parallel postulate from other axioms. Al Kashi
performed prodigious calculations, computing the value of π by circumscribing a circle
by a polygon having 3×1028 sides!

As an appetizer, let me offer Joseph’s illustration of the work of Omar Khayyam in
Chapter 11. Suppose that we have a ‘ratio problem’ with a,b,c,d such that b

c =
c
d =

d
a .

Then,
(

b
c

)2
=

c
d ·

d
a =

c
a and hence c3

= b2a. Letting b = 1, if there exist c and d such that

c2
= d and d2

= ac,

then we can determine the cube root c of a.

y = x2

y2
= ax

c

d

B F

E

FIGURE 2.

Omar Khayyam perceived an underlying geometry in this problem. In the equation
above, think of a as a constant and c = x and d = y as variables. Then we have two
parabolas as in Figure 2, with equations y = x2 and y2

= ax; they have a common vertex B

and mutually perpendicular axes, and they intersect a second time at E. It is easily checked
that at E we have x3

= a. Hence BF = c is the cube root of a.

We have all heard of the Chinese remainder 
theorem. Chapter 7 gives a very nice account of 
the historical development of ideas related to this 
(apart from geometry in Chinese mathematics). To 
trigger thought, consider the following problem 
from the 4th century mathematical text Sun 
Zu Suan Jing. There are an unknown number of 
objects. When counted in threes, the remainder is 2; 
when counted in fives, the remainder is 3; and when 
counted in sevens, the remainder is 2. How many 
objects are there? In modern notation,

N = 3x + 2, N = 5y + 3, N = 7z + 2, 

or better, 

N ≡ 2  (mod 3),  N ≡ 3  (mod 5),  N ≡ 2 (mod 7), 

and we seek the least integer value of N.  
(The answer is 23.) 

The chapter also has a brief discussion 
of mathematics in Japan, notably that of 
Seki Takakazu (1642–1709). Here was a 
mathematician who “discovered determinants ten 
years before Leibniz, . . ., discovered the conditions 
for the existence of positive and negative roots of 
polynomials, did innovative work on continued 
fractions, and discovered the Bernoulli numbers a 
year before Bernoulli.” 

George Joseph’s centrepiece of the book is his 
account of mathematics in India, and it is laid out 
in Chapters 8, 9 and 10. The first of these talks 
of ancient India, ideas from the Vedic period, 
Indian numerals, and Jaina mathematics. The 
second is on the classical period, recording 
the contributions by Indian mathematicians to 
astronomy, algebra and trigonometry (Aryabhata 
I, 5th century CE; Brahmagupta, 6th century 
CE; Mahavira, 9th century CE; Bhaskara II, 12th 
century CE). The third is on what might justifiably 
termed the crest of the peacock, the Kerala school 
of mathematics, especially the results attributed 
to Madhava (14th century CE) and Nilakantha 
(15th century CE). Though this is perhaps the 
main section of the book, I will not discuss it in 
detail here since much of this mathematics was 
described in the review of Kim Plofker’s book (At 
Right Angles, Volume 3, No. 3, November 2014, pp 
82–87).

The final chapter is on mathematics from the 
Arab world which Joseph presents as a prelude 
to modern mathematics. While the development 
of algebra in the Islamic world and its impact 
on European mathematics is well known, much 
less is generally known of the work of Islamic 
mathematicians in number theory, geometry 
and trigonometry. This brief chapter has enough 
material to interest every mathematics teacher 
in India. The work of Ibn al-Haytham (965–
1039), al-Biruni (973–1051), Omar Khayyam 
(1048–1126), and al-Kashi (1429) are important. 
Of these, Omar Khayyam is famous as a poet, 
but he was also a first-rate mathematician who 
propounded a geometric theory of cubic equations 
and tried (unsuccessfully) to derive the parallel 
postulate from other axioms. Al Kashi performed 
prodigious calculations, computing the value of 
π by circumscribing a circle by a polygon having 
3×1028 sides!

As an appetizer, let me offer Joseph’s illustration 
of the work of Omar Khayyam in Chapter 11. 
Suppose that we have a ‘ratio problem’ with a, b,  

c, d such that . Then,  

and hence c3 = b2a. Letting b = 1, if there exist c 
and d such that

c2 = d and d2 = ac,

then we can determine the cube root c of a. 

Figure 2.
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Omar Khayyam perceived an underlying geometry in this problem. In the equation
above, think of a as a constant and c = x and d = y as variables. Then we have two
parabolas as in Figure 2, with equations y = x2 and y2

= ax; they have a common vertex B

and mutually perpendicular axes, and they intersect a second time at E. It is easily checked
that at E we have x3

= a. Hence BF = c is the cube root of a.
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and thought provoking for our students to solve 
non-trivial problems posed more than 3000 years 
ago. 

Chapters 6 and 7 are on Chinese mathematics. It is 
very likely that most of our teachers are unaware 
of the long history of mathematical development 
that our neighbours had, and of the multiple 
transmissions between our cultures. Rather than 
list the many interesting topics, I have reproduced 
part of the chronology presented by Joseph (Table 
6.1 of Peacock) in Figure 1.

Chapter 7 is devoted to a specific period, the late 
13th and early 14th centuries, during the Song 
dynasty. Very fine mathematicians such as Qin 
Jiushao, Li Ye, Yang Hui, and Zhu Shijie lived in 
this period, and several schools of mathematics 
flourished. Joseph categorizes the essentially 
algebraic work of this era into three kinds: 
numerical equations of higher order, Pascal’s 
triangle (note the period, for what was named 
after the 17th century French mathematician 
Blaise Pascal) and indeterminate analysis 
(solving a system of n equations with more than n 
unknowns).

Figure 1.
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algebraic work of this era into three kinds: 
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Omar Khayyam perceived an underlying geometry 
in this problem. In the equation above, think of a as 
a constant and c = x and d = y as variables. Then we 
have two parabolas as in Figure 2, with equations y 
= x2 and y2 = ax; they have a common vertex B and 
mutually perpendicular axes, and they intersect a 
second time at E. It is easily checked that at E we 
have x3 = a. Hence BF = c is the cube root of a.

Khayyam extended his method to solve any 
third degree equation for positive roots. He 
solved equations for intersection of parabolas, of 
hyperbolas, of circle and parabola, and of parabola 
and hyperbola. Such application of geometric 
techniques to algebraic problems is of tremendous 
pedagogic value in the higher secondary stage in 
our schools, and I offer this only as a pointer to the 
rich lore available in mathematics from the Islamic 
world.

Pride and Practice
The Peacock is beautiful, and George Gheverghese 
Joseph has a pleasant style. To give you a flavour of 
his style, I quote from his concluding paragraph: 

. . . [I]f there is a single universal object, one that 
transcends linguistic, national, and cultural barriers 
and is acceptable to all and denied by none, it is our 
present set of numerals. From its remote beginnings 
in India, its gradual spread in all directions remains 
the great romantic episode in the history of 
mathematics. 

Indeed it is, and the style makes for very pleasant 
reading. There are some natural criticisms of 
the book, and since the first edition appeared in 
1991, historians have pointed to several flaws: the 
overuse of binary opposition of ‘European’ vs ‘non-
European’ mathematics, when he himself is making 
the case for global transmissions; speculation 
where there is no documentary evidence; problems 

with his dating; insufficient demonstration that 
modern mathematics was indeed as strongly 
influenced by these ‘eastern’ contributions; and so 
on. Clemency Montelle’s review of the third edition 
in Notices of the American Mathematical Society, 
December 2013, is a good place to not only read the 
critique but also get pointers to more recent and 
authoritative historical sources. 

However, it is undeniable that George Joseph is 
pointing us to a serious lacuna in our education, and 
in our teaching and learning practices. When we 
appreciate the cultural rootedness of mathematics 
and the history of mathematical thought across 
diverse cultures, it expands our horizons in multiple 
ways: rather than mere pride, we obtain a nuanced 
appreciation of our own past and culture, and its 
deep connections with other cultures; rather than 
accepting definitions and concepts as given (by an 
alien culture), we engage  with them, question them 
and conceive of how alternate trajectories may 
have altered them. The vast range of examples from 
across the world presented by Joseph encourages 
us to look closer at people’s practices and unearth 
heuristics and algorithms that, on exploration, may 
pose interesting questions for mathematics.

There is a convenient (albeit oversimplified) 
classification of mathematics encountered 
in learning the subject: at school we learn 
mathematics from the 18th century and earlier; as 
undergraduates, we learn largely mathematics from 
the 19th century; and as graduates and researchers, 
we approach 20th century mathematics. Even as a 
thumb rule, this observation yields an important 
lesson. If we wish to question the components 
that constitute school mathematics by considering 
alternate definitions, methods and trajectories, it’s 
a good idea to look at the past and across cultures. 
The Crest of the Peacock offers a panoramic view of 
what we are sure to find.

R Ramanujam is a researcher in mathematical logic and theoretical computer science at the Institute 
of Mathematical Sciences, Chennai. He has an active interest in science and mathematics popularization 
and education, through his association with the Tamil Nadu Science Forum. He may be contacted at  
jam@imsc.res.in.
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ALL RIGHT THEN !
We were pleasantly surprised to receive several responses to the question retrieved from http://www.futilitycloset.
com/2014/11/04/all-right-then-2/ and posed on page 15 of At Right Angles Volume 4 No 1 (March 2015).

AMONG THEM WERE THE FOLLOWING:

VAIDEHI MADHAVAN teaches at P.S. Senior Secondary School, Chennai and she writes, “Many a time, I have 
heard high school students ask the question ‘Why plus times plus is plus and minus times minus is also plus?’ 
and I am amused at the way these questions have been coined or worded. According to me, where is the 
question of multiplying a plus sign and another plus sign? I generally correct these students to use, instead, the 
terms ‘positive numbers’ and ‘negative numbers’.

To illustrate the rule, she uses an ingenious visual representation which can be appreciated by any student who 
can understand the meaning of the co-ordinate system of mutually perpendicular axes. She starts with a few 
standard conventions. 
a.	 In a number line, moving in the right direction of ‘0” is positive and moving in the left direction of “0” is 

negative.
b.	 Also, in a co-ordinate system of axes moving above or right of origin is positive, while moving below or left 

of the origin is negative.
c.	 In a similar way, when we move around a closed bounded region in the anticlockwise direction, the area 

covered is considered to be positive. If we move in the clockwise direction, the area is considered to be 
negative.

d.	 The product of two numbers a and b can be visualized as the area of a rectangle with sides of a units and 
b units. 

The following graph shows how the different products can be shown in the four quadrants. 

 

 

Using these conventions, and a co-ordinate system of axes, she is able to provide a rationalization as to 
why the product of two negative numbers is positive and the product of two numbers of unlike signs is 
negative. However, the rationalization is based on the conventions used including the convention (which 
was not mentioned) that the order of multiplication is x × y and not y × x. 

P.V. SATYA RAMESH of Shanti Asiatic School, Ahmedabad uses the patterns that emerge when 
multiplication is viewed as repeated addition to justify the rule. The visual explains the logic. 

  

 (4 ) x (5)  

 = 20 

 

 (-3) x (-6) 
= 18 

 (-5 ) x (3) = -15 

 

  

 (6) x (-4) = -24 

 

Using these conventions, and a co-ordinate system of axes, she is able to provide a rationalization as to 
why the product of two negative numbers is positive and the product of two numbers of unlike signs is 
negative. However, the rationalization is based on the conventions used including the convention (which was 
not mentioned) that the order of multiplication is x × y and not y × x.

1
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P.V. SATYA RAMESH of Shanti Asiatic School, Ahmedabad uses the patterns that emerge when 
multiplication is viewed as repeated addition to justify the rule. The visual explains the logic.2
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MEESUM NAQUI from KDAV Reliance, Jamnagar prefers unpacking the meaning of the arithmetic 
operations in order to understand the rule. Her rationale is as follows.

Addition of integers means to combine two sets of opposite events. For example:
1.	 Go up 3 steps and go up 4 steps can be written in mathematical form as (+3)+(+4)
2.	 Go down 3 steps and go down 2 steps can be written in mathematical form as (-3)+(-2)

Thus addition of (-2)  and (+2) will look like this: (-2)+(+2)=0 
Here zero means no change in final position. ‘-’ and ‘+’sign inside the bracket shows the negative and 
positive integers and the ‘+’ sign between brackets shows the operation of addition. Children often get 
confused in this and due care should be taken.
Multiplication of integers poses a problem as it refers to repeated operations. It makes little sense 
to say “move up 4 steps (-5) times”. To solve this problem let’s learn two basic terms, ‘doing’ and 
‘undoing’. 

Doing something twice means doing the same thing again and again two times. Undoing something 
means to do just the opposite, so undo thrice means to do opposite of something three times. For 
obvious reasons we will take doing as +ve and undoing as –ve. 

Now look at the following examples. 
1.	 Do twice ( go up three stairs) can be written in mathematical form as (+2)×(+3)=(+6)
2.	 Undo thrice ( go down two steps) can be written in mathematical as (-3)×(-2)=(+6)
3.	 Do twice ( go down 4 steps) can be written in mathematical as (+2)×(-4)=(-8)
4.	 Undo thrice ( go up four steps) can be written in mathematical as (-3)×(+4)=(-12)

Above examples clearly show why the product of two negative integers is positive. This approach is 
based on real life situations and does not allow any scope for rote learning.

3

Editor’s Note: 
We are delighted that among our readers are teachers who clearly  

attempt to avoid rote learning and who use the tools of visualization,  
pattern recognition and logic to improve understanding!
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The	Closing	Bracket	.	.	.

I've	lived	a	life	that's	full.	I've	traveled	each	and	every	highway;	

And	more,	much	more	than	this,	I	did	it	my	way.

I	planned	each	charted	course;	Each	careful	step	along	the	byway,	

And	more,	much	more	than	this,	I	did	it	my	way.

Yes,	there	were	times,	I'm	sure	you	knew,	when	I	bit	off	more	than	I	could	chew.

But	through	it	all,	when	there	was	doubt,	I	ate	it	up	and	spit	it	out.

I	faced	it	all	and	I	stood	tall;	And	did	it	my	way.

For	what	is	a	man,	what	has	he	got?	If	not	himself,	then	he	has	naught.

To	say	the	things	he	truly	feels;	And	not	the	words	of	one	who	kneels.

The	record	shows	I	took	the	blows	-And	did	it	my	way!	

Yes,	it	was	my	way.

Readers	may	recognize	these	lines	from	selected	verses	of	“My	Way,”	a	song	popularized	by	

Frank	Sinatra.	Its	lyrics	were	written	by	Paul	Anka	and	set	to	music	based	on	the	French	song	

“'Comme	d’habitude.”	We	downloaded	it	from	http://en.wikipedia.org/wiki/My_Way

So	why	is	this	song	the	Closing	Bracket	for	the	July	2015	issue?	In	this	age	when	mathematics	

is	packaged	and	re‐packaged	by	teachers,	parents	and	tuition	classes,	chewed	up	and	broken	

into	digestible	pellets	by	online	support	sites,	shredded	into	formulae	lists	and	exam	guides,	

what	 chance	does	a	 student	have	 to	explore,	experiment,	make	mistakes,	 learn	 from	them	

and	grow	in	the	process?	
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So	here	is	the	first	question:	Can	one	afford	to	be	adventurous	in	mathematics?	Can	a	teacher	

of	mathematics	allow	her	students	to	explore	a	variety	of	paths,	knowing	full	well	that	not	all	

of	them	will	lead	to	a	neat,	satisfying	solution	or	proof?	When	time	is	at	such	a	premium	in	

the	school	year	can	we	really	afford	to	do	this?

And	here	is	the	next	question:	Can	we	make	mistakes	in	mathematics?	Isn't	this	a	subject	that	

is	all	about	the	'right	answer'?

Pressed	for	time,	with	the	right	answer	and	the	right	method	up	her	sleeve,	can	one	fault	a	

teacher	who	hands	these	over	to	a	student	with	the	best	of	intentions?	But	at	what	cost?	We	

don't	claim	to	have	answers	for	all	these	questions	but	enough	has	been	said	about	 'math‐

phobia'	and	the	number	of	students	who	can't	wait	to	drop	the	subject.	What	of	the	student	

who	does	well	in	it?	What	of	the	teacher	who	is	reputed	to	teach	it	well?	Are	marks	the	sole	

criteria	for	these	accomplishments?	Has	the	teacher	produced	a	mathematician	or	a	mark‐

machine?	Teachers	in	institutions	which	conduct	difficult	entrance	examinations	have	noted	

that	getting	 into	and	doing	well	 in	and	appreciating	a	course	seem	to	require	 two	entirely	

different	skill	sets	and	student	types.	What	about	the	work	space?	Do	we	have	graduates	who	

have	honed	their	thinking	skills,	developed	their	own	algorithms	and	learnt	to	be	problem‐

solvers?

Is	 there	 virtue	 in	 letting	 students	 experience	 the	 subject	 in	 all	 its	 beauty	 in	 a	 slow	 and	

measured	manner?	

As	 lovers	of	 the	 subject,	 let's	 think	 long‐term	and	create	opportunities	 for	 students	 to	 say	

'yes,	it	was	my	way.’

—	Sneha	Titus

Associate	Editor

The	Closing	Bracket	.	.	.	contd.,
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Specific	Guidelines	for	Authors	

Prospective	authors	are	asked	to	observe	the	 following	guidelines.	

1.	 Use	a	readable	and	inviting	style	of	writing	which	attempts	to	capture	the	reader's	attention	at	the	start.	

The	first	paragraph	of	the	article	should	convey	clearly	what	the	article	is	about.	For	example,	the	opening	

paragraph	could	be	a	surprising	conclusion,	a	challenge,	figure	with	an	interesting	question	or	a	relevant	

anecdote.	Importantly,	it	should	carry	an	invitation	to	continue	reading.	

2.	 Title	the	article	with	an	appropriate	and	catchy	phrase	that	captures	the	spirit	and	substance	of	the	article.	

3.	 Avoid	a	'theorem‐proof'	format.	Instead,	integrate	proofs	into	the	article	in	an	informal	way.	

4.	 Refrain	 from	 displaying	 long	 calculations.	 Strike	 a	 balance	 between	 providing	 too	many	 details	 and	

making	sudden	jumps	which	depend	on	hidden	calculations.	

5.	 Avoid	specialized	jargon	and	notation	—	terms	that	will	be	familiar	only	to	specialists.	If	technical	terms	

are	needed,	please	define	them.	

6.	 Where	possible,	provide	a	diagram	or	a	photograph	that	captures	the	essence	of	a	mathematical	idea.	

Never	omit	a	diagram	if	it	can	help	clarify	a	concept.	

7.	 Provide	a	compact	list	of	references,	with	short	recommendations.	

8.	 Make	available	a	few	exercises,	and	some	questions	to	ponder	either	in	the	beginning	or	at	the	end	of	the	

article.	

9.	 Cite	sources	and	references	 in	 their	order	of	occurrence,	at	 the	end	of	 the	article.	Avoid	 footnotes.	 If	

footnotes	are	needed,	number	and	place	them	separately.	

10.	 Explain	all	abbreviations	and	acronyms	the	first	time	they	occur	in	an	article.	Make	a	glossary	of	all	such	

terms	and	place	it	at	the	end	of	the	article.	

11.	 Number	all	diagrams,	photos	and	figures	included	in	the	article.	Attach	them	separately	with	the	e‐mail,	

with	clear	directions.	 (Please	note,	 the	minimum	resolution	 for	photos	or	scanned	 images	should	be	

300dpi).	

12.	 Refer	to	diagrams,	photos,	and	figures	by	their	numbers	and	avoid	using	references	like	'here'	or	'there'	or	

'above'	or	'below'.	

13.	 Include	a	high	resolution	photograph	(author	photo)	and	a	brief	bio	(not	more	than	50	words)	that	gives	

readers	an	idea	of	your	experience	and	areas	of	expertise.	

14.	 Adhere	to	British	spellings	–	organise,	not	organize;	colour	not	color,	neighbour	not	neighbor,	etc.	

15.	 Submit	articles	in	MS	Word	format	or	in	LaTeX.	
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Measurement occupies a unique position in the curriculum, for various reasons. As it is an 

essential everyday activity in human life, children are naturally exposed to measurement in 

various situations at home and elsewhere. Also, measurement overlaps both with numbers 

and geometry. It involves spatial dimensions as well as counting. In measurement, one is 

measuring one attribute in terms of another attribute. Also one is expressing a non-discrete 

quantity in terms of discrete numbers. Since there are different ways of measuring the given 

length or mass, the choice of the measure is dependent on the purpose that needs to be 

served. Children need to understand that some contexts require precision to a fine degree 

while some require approximate figures. A strong foundation in measurement concepts 

leads to a better understanding of decimal numbers in particular.

The focus of the teaching of measurement needs to be more on developing a proper 

concept of measuring rather than on practising measuring activities. As the topic is 

developed, children need to begin to appreciate under what situations measurement can be 

used, and the suitability of different measures in different situations. It is also important to 

create activities to the extent possible which have an inbuilt task in them, a task which is 

sufficiently interesting and challenging for the children to take up with enthusiasm.

I have focussed only on length, weight and capacity in this article. Measurement includes 

many other measures as well: measurement of time, of temperature, of speed and so on. I 

shall go into these in a subsequent piece.

Measurement activities often require tools which may be limited in supply. Also typically the 

activities require children to cooperate (like holding a rope tight or bringing two things 

together). It is best to organise children in groups of four and set each group a task. 

Young children require both experience and maturity to understand measurement concepts. 

The awareness of quantity and appropriate language associated with that happens 

simultaneously. Words such as big, small, more and less are learnt at a very early age. 

However, they may take time to understand the principle of conservation of quantity or 

number. It is dependent on the experiential understanding and maturity of the child and 

develops slowly and varies from child to child. Also, they may hold false assumptions about 

weight or volume. For instance, they may believe that between two objects, the one that 

looks larger also weighs more. Or they may think that a taller container can hold more than 

a shorter container. However, a teacher can quicken the pace of development by exposing 

the children to meaningful activities and guiding them along by getting them to articulate 

their observations and ideas. Through conversation, a teacher can clear some of the 

misconceptions and help the child to acquire right understanding. The principle of 

conservation is a prerequisite in developing an understanding of the principles of 

measurement. 

Keywords:	Measurement,	length,	height,	weight,	capacity,	size,	comparison,	estimation



To understand the attribute of LENGTH:

Materials: Straws, used sketch pens, ice-cream sticks or 

toothpicks, coloured paper strips or wooden rods of 

different lengths, coloured ropes or shoe laces of 

different lengths, pencils, beads and rope for threading.

Selection of materials is to be done carefully so that 

children can focus on one attribute. Large 2-D shapes 

and 3-D objects can be introduced at a later point as 

they have more than one measure (length, width and 

height).

Language to be introduced: long, short, tall, longest, 

shortest, thick, thin, wide, narrow, distance - related 

words (far, near).

Comparison of two objects of the same type: Let 

children compare two standing objects like two trees or 

two children standing on level ground to identify the 

taller and the shorter. Since the objects stand at the 

same level, there is no scope for confusion. Let them 

now do the same for two sticks or two paper strips to 

identify the longer and the shorter. An advantage of 

measuring strips is that they can be placed one over the 

other. To compare the strips, the children will need to 

bring them close to each other. At this point, the 

teacher must check to see that the child has placed the 

strips so that the lower ends have the same starting 

point. If not, the teacher will need to help the child 

understand that in order to compare lengths, the 

objects must be aligned at the starting point.

Comparison of two objects of different types: Let 

them compare the lengths of a pen and scale, chalk and 

duster, a pencil and scissors.

Task 1: Give each child a straw and ask the children to 

get an object as long as the straw. They may find a 

pencil, a book, a leaf or a broom stick. In the process of 

locating the object, they would have tested it against 

many objects and acquired practice in comparing 

lengths of objects. 

Comparison of more than two objects: Given a set of 

objects (pencils, chalks, paper strips, sticks and so on) 

with different lengths, they can arrange the objects in 

order of their length. Children can make bead chains 

and hang them in length order. Note that bead chains 

provide an opportunity to make numerical comparisons 

too: �The blue bead chain is two beads longer than the 

red bead chain.�

Task 2: Ask children to form groups of four and have 

each group stand in height order.

Task 3: Sorting activity: Materials: Coloured straws or 

crayons of four different lengths as shown in the picture 

shown in Figure 1, with a few of each size. Ask the 

children to sort the straws or crayons into groups of 

equal length.

Introduce the words 'wide' and 'narrow' in various 

contexts: Opening and closing the door, pointing to the 

gap (wide and narrow); or wide/narrow paper strip. 

Young children enjoy physical activities and they can 

demonstrate the meanings of these words by opening 

their eyes ('wide open', 'tightly shut'), parting their 

fingers, etc.

Provide opportunities for checking other forms of 

lengths like width and thickness. Again, ensure that they 
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Preliminary activities for young children (3 to 5 year olds):
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have aligned the objects correctly. Let them compare the 

widths of two note books, widths of two pencil boxes, 

etc. Encourage them to use appropriate words: �The 

English notebook is wider than the Math note book� or 

�His pencil box is narrower than her pencil box�, etc. Let 

them compare the width of a chalk box and a pencil 

box, width of a duster and ruler.

Similarly introduce words like thick and thin by pointing 

to a thick book and a thin book, and a thick line and a 

thin line. They can observe the different fingers on their 

hand and describe them in terms of these words.

Task 4: Let each group of students collect four sticks 

and use the words thick, thin, thicker than, thinner 

than, as thick as, in between, etc to describe them. Let 

them arrange the sticks in order of thickness. 

Comparisons of objects with more than one 

attribute: In the case of 2-D shapes and 2-D objects, 

comparisons can be made based on different attributes. 

�The text book is longer and wider than the note book.� 

�The door is taller than the window, but the window is 

wider than the door.� �The bench is wider than the 

table, but the table is taller than the bench.� And so on.

The teacher may pose a problem: �Is there a box in 

which I can keep the duster?� Let the children 

experiment with various boxes in the class and give 

reasons for why it will fit or why it will not. �Can it fit 

into the chalk box? No, the chalk box is not long 

enough. Can the duster fit into the pencil box? Yes, it 

can as the box is longer than the duster and wider than 

the duster.� Many more questions of this kind can be 

posed. Can the book go into this bag? Will the map fit 

in this space?

To understand the attribute of CAPACITY/ 

VOLUME:

Materials: Large tub or a decent sized sand pit, cups of 

different sizes, narrow tall containers, wide short 

containers, discarded transparent plastic bottles, 

transparent plastic bowls, cardboard boxes of different 

sizes, sand, beads, cubes and boxes, bricks or wooden 

blocks. Bucket, mugs, funnel, sieve and water.

Children need to experience activities involving filling, 

pouring, packing, fitting and emptying to understand 

the principles involving capacity. With small children we 

do not use the words volume or capacity. Instead we 

pose questions such as: �Does this hold more than 

that?�

Children take great pleasure in filling slightly damp sand 

into containers and inverting them to get sand moulds. 

This is potentially an excellent opportunity to bring out 

concepts related to shape and capacity. Once the children 

have made several sand moulds with different objects on 

the ground, an interesting question to pose is: �Identify 

the container used to make each mould.� Secondly, 

moulds come in interesting shapes based on the 

containers used: cylinders, cones, truncated cones, 

cuboids and cubes. Children can describe these shapes in 

their own way. Thirdly, a discussion can ensue on finding 

the bigger mould.

Let children compare capacities of two containers by 

filling one with sand and then pouring out the same 

sand into the other container. Let them repeat this 

activity with different containers. Initiate a conversation 

with the child to check whether the child has realised 

that if the sand does not fill the second container, then 

the second one has greater capacity. And if it overflows, 

then the first one has greater capacity. 

It is quite common for young children to think that a tall 

container has greater capacity than a short container. It 

is only through experiences of filling and testing that 

they begin to realise that this may not always be true. 

Usage of transparent containers makes it easier for 

children to see the capacities of different containers. 

Give children two plastic containers of equal height, one 

with a narrow base and one with a broad base. Let 

them fill each one with a cupful of water. Ask: �Why is 

the height of the water in one more than in the other?� 

Let them understand that the size of the base is more in 

one than in the other. Devise more such experiments to 

remove misconceptions.
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To understand the attribute of WEIGHT:

Materials: Large tub, few cups or mugs of same size, 

small cardboard boxes, sand, water, beads, used pens, 

leaves, chalk pieces, different objects of varying weights.

Let children pick up one object in one hand and one in 

the other to compare their weights.

Let children play around with filling a cup with various 

materials such as sand, chalk pieces, stones etc, and ask: 

�Which material is the heaviest?� �Which is the 

lightest?�

Children may have notions about length and weight or 

volume and weight which are incorrect. Give 

simultaneously opposite examples as given below to 

prevent and clear any misconceptions that may arise 

with regard to weight. 

A larger object does not always weigh more. 

Give children a large balloon and a tennis ball. Let them 

compare their weights and see that even though the 

balloon is larger in size, it weighs less. Also, give two 

other objects where the larger object does weigh more, 

say a thick book and a thin one. 

A larger quantity does not always weigh more.

Fill a large packet either with cotton or saw dust. Fill a 

smaller packet with sand so that the weight of the sand 

packet is more than the sawdust packet. Let children lift 

both objects and find out which has greater weight.

Objects of the same length may have different 

weights. 

Give children different objects of the same length, say a 

paper strip and a wooden or metal rod. Let them pick 

up the objects one in each hand and compare the 

weights. Do the same with more pairs of objects of the 

same length. 

Weight of a larger number of one type of object is 

not always more than the weight of a smaller 

number of some other type of object.

Give children five balloons or table-tennis ('ping pong') 

balls and a cricket ball. Let them compare the weights of 

both and see. Let them realise that a greater number 

does not necessarily imply more weight.

Tie a rope from one end of the class to another with a 

basket hanging from it as shown in figures 3 and 4. Pull 

it taut. Let children experiment with placing different 

objects in the basket to find the heaviest and the 

lightest. 

Measuring activities for 5 to 7 year 

olds:

Measurement of LENGTH with 5 to 7 year 

olds: Comparisons of objects which need another 

object to be used as a measure: 

Task 5: Is the cupboard in the class wider than the 

door?

This requires comparison of objects which are fixed and 

cannot be placed next to each other.

Questions of this kind require the use of another object 

to be used as a measure, say a string. The cupboard is 

first measured with a string and a blue mark is made on 

the string marking the endpoint. Then the same string is 

used to measure the door and a red mark is made on it 

at the new endpoint. From the two marks we can 

determine which one is the wider object. Or two strings 

can be used and laid next to each other for comparison.

Children can be encouraged to use their feet or arms to 

make comparisons of fixed objects. Example: The width of 

the classroom steps is longer than my foot, and the width 

of the steps on the slide is shorter than my foot. 

Figure 4Figure 3
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Task 6: Who has the biggest head? Let children work 

in pairs and use a string to measure the length 

around the forehead. They can mark the strings and 

lay them out straight for comparison. 

The level of accuracy needed in measurement depends 

very much on the context. In many of our day to day 

activities, we use non-standard units (NSUs) routinely as 

we need only approximate values. By approaching 

measurement through the usage of NSUs, the 

measurement concept becomes clear to young children. 

A scale with numbers and fine divisions can be better 

appreciated by the child when he or she constructs the 

scale and marks the numbers on it.

Pose a task: Is the length of the class more than the 

width? If so, by how much? 

Children select a unit available in the class like a straw to 

measure the length of the room and the width of the 

room in terms of number of straws and determine 

which is bigger. Selection of the unit should be 

attempted by the child on his/her own. He/she needs to 

develop the skill of choosing the right unit. It is only 

through trial and error that the child begins to realise 

that a large unit will not give a useful answer, while a 

very small unit will make the number large and 

unwieldy. Later, guide the children to use straws or 

wooden blocks for measuring longer lengths and ice-

cream sticks or paper clips for measuring smaller 

lengths. Beads can be used for measuring very small 

lengths but they tend to roll. 

While they measure with NSUs the teacher needs to 

watch out for the following:

 Do the children know where to begin and end? Have 

they left any gap at the start, or is it aligned 

correctly?

 Have the children placed the units one after another 

without gaps or overlaps?

 Have they managed to form a reasonably straight 

line or has the line become curved?

If the teacher notices that any of the above conditions 

have not been met satisfactorily, he/she should initiate a 

discussion or demonstrate to them why it would give an 

incorrect result. Also, while using straws and sticks an 

uncovered space might result at the end. Teacher can 

help them to do rounding.

I once asked a group of preschool children, varying in 

ages from 3 to 5, to make the longest possible train in 

the class using blocks. It was very interesting to see the 

engagement that ensued. One child began to form a 

line of blocks from the middle of the room. Soon they 

laid out a string of blocks and reached one end of the 

room. Just as they thought they had finished another 

child noticed that they had started from the middle and 

that they could extend it in the other direction too. 

Quickly more blocks were picked off the shelf and 

unloaded to complete the train to the other end as well. 

Since they had not lined the blocks against the wall, 

their train was not absolutely straight. When I asked 

'how many bogies are there in your train?, with great 

enthusiasm they counted off in chorus and found it to 

be 114 bogies. The counting itself did not go smoothly 

as the younger ones were uncertain about some 

numbers. But the older ones corrected them, and they 

finally arrived at the correct number. I then asked them: 

�How many bogies long is the room?� They took some 

time to respond and this time it was the older ones who 

saw the correspondence between their train and the 

length of the room and answered correctly. 

Measurement of curved lines: Let children use small 

units like ice-cream sticks or paper clips and measure the 

length of curved lines or length around a circular shape. 

�Whose shape has the biggest round?� �How much 

bigger is this flower pot than the other?�

As children go through the experience of measuring 

lengths with NSUs they need to absorb certain essential 

principles involved. One principle is that they need to use 

the same unit repeatedly while measuring one object. 

Secondly to make comparisons between two lengths they 

need to use the same unit for measuring both. Thirdly 

they begin to see that measurement with a larger unit will 

result in a smaller count and measurement with a smaller 

Figure 5
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unit will result in a larger count. They will later be able to 

appreciate that the choice of the measuring unit depends 

on the level of accuracy that is needed.

The teacher can devise activities which lead to an 

understanding of measurement processes and skills. 

Materials: A long strip, three measuring units of 

different length (chalk, tooth pick, straw).

Let children measure the long strip with each unit. They 

will see that when they measure with straws they get a 

small number, when they measure with a chalk they get 

a larger number and when they measure with a 

toothpick they get a still larger number.

Body lengths: Let children work in pairs. One child lies 

on the floor, and the other traces the outline of his body 

with a chalk. Let each child measure the length of his 

body using straws or sketch pens.

Help them to record the information. Similar activities 

can be done by tracing the foot or palm of each child 

and selecting a suitable measurement unit.

Using body measures as NSUs: Children now begin to 

measure lengths using the foot as a unit of 

measurement. They also use hand span and paces, 

though this requires greater motor co-ordination to get 

it right. Sports and games activities provide many 

measurement opportunities. 

Task 7: Mark a circle on the ground outside or in the 

veranda of the school. Let children take turns to stand in 

the circle and throw a stick, one by one. Let them 

measure the distance thrown using feet or paces.

Constructing Rulers of different units: Let children 

build cardboard rulers using a straw or ice-cream stick 

as a unit, as shown in Figure 6. Let them number the 

markings as '1 straw' or '1 stick.' This will help them 

understand that '1' points to the place where one straw 

ends and the second one begins. Children often make 

errors in measuring by not aligning an object with zero 

on the scale as they do not understand that the number 

'1' is at the end point of the measuring unit. 

Show them why aligning the starting end of an object 

with zero facilitates reading of information. At the same 

time, expose them to measuring lengths of objects 

which are not aligned, as shown in Figure 7, so that 

they understand the need to subtract the first number 

from the second number in order to determine the 

length of the object.

Measurement of CAPACITY for 5 to 7 year olds:

Materials: tub, plastic bottles, plastic containers (some 

with small base and some with large base), cups or 

glasses, cardboard boxes (all these items should be of 

different sizes), plastic or wooden cubes for fitting into 

the boxes, sand and water.

Children can compare the capacities of two or more 

containers by filling the containers with sand measured 

with a cup and count the number of cupfuls each one 

holds. Ask questions which require them to apply their 

understanding: �Does this cup hold double of that 

cup?� �Will the container fill up if I pour one more 

cupful?�

Let each group of four children select one large 

container and three differently sized cups for measuring 

the capacity of the container. Ask questions which will 

require them to reason out their answers. �How many 

small cupfuls of sand did you use to fill the bowl?� 

Introduction to non-standard units as a measure: 

Measurement of length w

Figure 6

Figure 7

Figure 8



�How many big cupfuls of sand did you use to fill the 

bowl?� �Why did you get a smaller number?� Point to a 

size which is in-between and ask: �What will happen if 

you use this cup?� Point to a bowl which is smaller in 

size than the one measured and ask: �How many small 

cupfuls of sand will this hold?�

They can measure the capacities of their water bottles. 

Children's water bottles come in various shapes and 

sizes, and as they measure them they will see that 

objects which look different in size and shape may have 

the same capacity. They can also measure the capacities 

of their tiffin boxes by filling it with cubes. 

Measurement of WEIGHT for 5 to 7 year olds:

Materials: Give children a collection of objects and ask 

them to pick up pairs of objects which are similar in 

weight.

Building a sense of weight: Give children some 

identical cardboard boxes each containing an object 

which they have handled before (examples: chalk, 

duster, crayon box, tennis ball, stapler, punch), of 

different weights. Mention the names of the objects 

used. Let children pick up each box in turn and guess 

the object in the box based on the weight.

Hanger balance: Build a hanger balance as shown in 

Figures 9 and 10 for children to compare weights of 

different small objects.

With older children in the primary school, the teacher 

should use the knowledge and experiences that children 

already possess with regard to usage of length, weight 

and capacity. Children would have already witnessed 

usage of length while buying cloth, when they visit a 

tailor, while buying shoes, height chart in a doctor's 

clinic, etc. They would have experienced weights while 

buying vegetables and sweets, on packaged products, 

in a doctor's clinic, in baking activities, etc. They would 

have experienced capacity while having cool drinks, 

buying milk or oil, drinking water cans, metre readings 

of petrol consumption, etc.

Measuring activities for 7 to 9 year 

olds

Measurement of LENGTH for 7 to 9 year olds:

Need for standard units: Select a long object in the 

classroom, say the blackboard or a wall, for measuring 

its length. Ask different children to measure it using 

hand spans. The teacher can also measure using his or 

her hand span. It will be noticed that slightly different 

answers are obtained. Discuss with the children the 

reasons for such differences. Point out the difficulties 

that can arise if we had to ask a carpenter to make a 

frame for the board and we specified the dimensions 

using NSUs. Bring in the need for standard units as 

measures. 

Sense of centimetre: Now one can make the transition 

to the standard units of centimetre and metre. Show a 

centimetre ruler to the children and help them 

understand the markings. Typically, the zero mark is a 

little off the edge of the ruler. The teacher must explain 

this so that the children clearly see that the cm length 

begins at the zero mark. 

Normal rulers come with millimetre markings as well. If 

one wishes to avoid teaching millimetres at this stage, it 

is good to prepare and keep centimetre rulers in the 

class, so that one can introduce millimetres at a later 

point. During the days when wooden rulers were 

available, I used the back of the ruler to create cm 

markings. However, if children are curious and ask 

about the smaller divisions within the centimetre 

markings, the teacher can explain about millimetres as 

well. Let the children count the divisions and see that 10 

millimetres makes a centimetre, and that a millimetre is 

useful for very small lengths. However, while recording 

measurements they can write lengths as 1 cm and 5 

mm, or 15 mm. Decimal notation can be taught later.
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Construct a ruler with only centimetres marked: Even 

though children have rulers of their own, it is still 

worthwhile to get children to build rulers with cm 

markings and number the markings as 1 cm, 2 cm, etc. 

In the act of constructing and making markings and 

labelling them, their understanding of a measuring scale 

and its divisions becomes clearer. 

Let them now observe a normal ruler and describe it in 

terms of the main divisions they see, how each division 

is further divided into subdivisions, the numbering on 

the ruler, etc. Verify whether they understand this 

completely and whether they are able to use it correctly. 

Let children measure various objects in their bag, 

recording the information in a table form. Some 

questions are always big hits with children: �Who has 

the widest smile?� �Who has the longest nose?� �Who 

has the longest palm?� While measuring length, ensure 

that children do not confuse length with area measure. 

Length is a linear measure whereas area is a surface (2-

D) measure.

Building estimation skills using body measures: Let 

children find and look for cm sized parts in their body. 

Ask: �Which finger nail is about 1 cm wide?� Once that 

is clearly established, they can learn to use their sense of 

a centimetre to estimate lengths of other small objects.

Practice activities: Children can be given coloured 

streamers to cut 1 cm pieces without measuring. They 

can later make a collage and hang it in the class. Toilet 

roll paper can also be used for cutting and estimation 

activities involving bigger lengths like 10, 15, 30 cm.

Let them go on a cm hunt and find natural objects 

which are about a cm long. 

Shoe size: Let them measure their foot size and see 

how it corresponds with their shoe size.

Footprints: Make children into groups of four. Using old 

newspapers, each group can print their footprints using 

poster colour. Other groups have to match the footprint 

with the right person.

Let children collect some small objects like screws, pen 

caps, chalk pieces, bottle caps, etc. Let them make a 

table listing these objects and write their estimations 

before checking and writing the actual measurements 

next to them.

Construction activities: Measurement becomes 

meaningful when children are given construction tasks 

for which they need to use measurements. Create a box 

to hold a given object. Make a paper T-shirt for a friend, 

using a newspaper. Create a streamer decoration for the 

classroom. Make a rangoli design in the centre of the 

floor. 

Sense of metre: Show them a metre ruler and 

demonstrate usage of it in measuring a few objects in 

the class. It is good to cut and keep a few 1 metre 

pieces of rope for measurement activities. Let the 

children use it for measuring arm length, height, etc. 

They can describe these measures in terms of �my arm is 

less than a metre,� �my leg is less than a metre,� �my 

height is more than a metre.�

Building estimation skills using body 

measures:

Demonstrate that the distance from one shoulder to the 

tip of the opposite arm is roughly a metre (for an 

'average' adult). They can now begin to use this as a 

rough measure in various estimation activities. 

On a daily basis, pose questions about the lengths of 

new objects inside or outside the class which require 

them to use their sense of cm and metre. To reinforce 

the sense of how large is a metre, ask questions such as: 

�Guess the length of a cycle and a car. Guess the width 

of a road.� They can later measure the width of a 

narrow road and a broad road, and the width and 

length of a car.

More on metres:

Materials: Measuring tapes, metre rulers.

By class 5, they can measure lengths of paths from the 

school gate to the school, or the length of the school 

veranda, or the road in front of the school. At this point 

one needs to discuss rounding to the nearest whole 

figure.

They should also be given tasks which require them to 

measure lengths in parts and add them like total length 

around a building or a garden bed. They can also be 

given broken up tasks so that pairs of children measure 

lengths from opposite directions and add them to arrive 

at the total figure.

Figure 11
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Different routes: Ask the children to think of the various 

paths they can take from the school gate to their 

classroom. Let them guess the length of these routes. 

They can then measure these lengths and share their 

measurements in class. 

Children of primary school find it difficult to develop a 

sense of kilometre. However, sports events which involve 

running on 50 m, 100 m and 200 m tracks will help 

children develop a sense of these measures.

Task 8: Given a simple local map depicting lengths in 

kilometres, children will be able to work out the lengths 

of the shortest routes connecting various pairs of places.

Foot and inches: Since many measurements are done 

using feet and inches as measures (rather than metre 

and cm), children can be taught these in a subsequent 

year once they thoroughly understand cm and metre.

Building estimation skills using body measures: Let 

children use the knowledge of their own height to 

estimate the heights of various objects in the class. Get 

them to articulate how they think about it. They may 

say: �this seems to be double my height� or �This is 

slightly more than half my height� or �This is close to my 

height,� etc.

Let them estimate height of the door, height of the class 

room, height of the tube light, bench, chair, height of 

the flag pole, etc. This can be followed by actual 

measurement activities using a foot ruler or a metre 

scale.

Task 9: Match object and length.

Prepare a set of object cards and length cards. Object 

cards can have labels and pictures of familiar objects and 

animals with varying heights (dog, elephant, coconut 

tree, table, stool, flower pot, doorstep ) and the length 

cards can have possible heights in metres, centimetres.

Children will have to use their sense of length to match 

these cards.

Measurement of CAPACITY for 7 to 9 year olds:

Materials: Litre bottles, half litre bottles, 100 ml, 50 

ml, 250 ml measuring cups, measuring spoons, 5 ml 

and 10 ml measuring caps of medicine bottles, 

normal glass, standard cup, paper cups, spoon, 

bucket and bathing mug, containers with labels 

showing capacity, sand, water, cardboard boxes, 

cubes

Building sense of capacity of everyday objects (drinking 

glass, teacup, spoon, water bottle): Let children fill a 

tumbler using a 100 ml measure and check its capacity. 

Let them also fill a tea cup and a spoon with 

appropriate measuring units and check their capacity. 

As 1 litre bottles are widely used, children are quite 

familiar with them. They can also measure a bath mug 

and a small bucket. Once they are completely familiar 

with the capacities of these objects, they will be able to 

use this knowledge for estimating the capacities of 

other containers. 

Create a calibrated bottle: Let children use a standard 

transparent bottle. They can fill it with 100 ml measure 

and mark on the bottle with a marker pen. They can 

record in multiples of 100 or 250, 500, 750, etc.

Let children use cubes to fill different cardboard boxes 

(toothpaste box, soap box) and compare capacities of 

these boxes. 

Task 10: Building boxes with interlocking cubes or plain 

cubes: Give each group of children 36 cubes. 

One challenge could be to 

build open boxes with 

t h e m .  W h a t  i s  t h e  

maximum capacity of these 

boxes?  Another challenge 

can be to make all the 

Figure 12 Figure 13

Figure 14
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possible types of cuboids with them to see how many 

differently shaped cuboids can be made from the same 

number of cuboids.

Checking capacity through displacement: Place a 

small bucket filled completely with water in a tub. Lower 

a closed bottle into the bucket. Let the water which has 

spilled out be collected carefully and poured into the 

immersed bottle. What is noticed?

Measurement of WEIGHT for 7 to 9 year olds:

Use a rubber band and a clip along with a basket as 

shown in figures 15 and 16. Let children select three 

objects and guess the heaviest and lightest among 

them. Children can now hang the objects from the 

hooks and measure the lengths of the stretched rubber 

band. Do they see a relationship between the weight of 

the object and the length of the stretch?

Materials: Balance made by the children, real 

balance if possible, 50 gm weight, 100 gm weight, 

250 gm weight, 500 gm weight, 1 kg weight (it is 

easy to put together some stones of equivalent 

weights packed into cloth bags).

Let children measure the weights of many everyday 

objects. 

Let them build a sense of the weights of some objects 

they use every day, weights of their tiffin box, water 

bottle, notebook, biggest textbook, pencil box, pencil, 

etc. They should use actual weights for the 

measurements and record the results. Using knowledge 

of these weights, they should be able to estimate the 

weights of other objects in the class. 

Game: Find a match! One child picks up any object, e.g. 

a rubber ball, and asks the others: �Find a match for the 

rubber ball.� The other children try to find another 

object with a similar weight. They can later compare the 

actual weights using the balance. Whoever comes 

closest is the winner.

Home project: Let children look around in the house, 

particularly the kitchen, and ask their parents to make a 

list of items bought in gm, kg, litres, etc. Discuss the 

need for smaller measures like gm in medicines and 

cooking, and the need for larger measures like tonnes. 

Building estimation skills: Estimation is a skill learnt 

through trial and error. One learns from the feedback 

one gets and the skill gets refined. Children use 

estimation frequently in daily life. They may not even be 

aware that they use estimation when they race or jump 

or leap from one place to another, when they estimate 

the length of paper needed to make a paper plane or 

the time they need to complete their homework. 

Build the estimation skills by specifying the measure of 

one object to determine the measure of other objects. If 

the weight of an orange is known, weights of other 

fruits like apple, sweet lime, banana, lemon and 

coconut can be estimated by comparing them mentally 

and then multiplying or dividing by a suitable factor. 

Similarly, if the height of the classroom is known, then 

other heights like the height of the building, the flag 

pole, the gate, the door, the black board can be 

estimated. Another important approach used in 

estimation is to estimate the length or weight of a small 

portion of the actual object. Example: If one wants to 

estimate the height of a book shelf with 6 divisions, one 

will estimate the height of one division and then 

multiply by the appropriate factor.

Activity: Find the unit used. 

Create a worksheet or a set of cards which give 

measures of various objects without specifying the unit 

used. Let children use their sense of measure to decide 

which unit has been used. Example: Rishi is 120 ___ tall; 

weight of this apple is 125 ___; the handkerchief is 25 

___ long; the shoe is 130 ___ long; this jug's capacity is 

2000 ____.

Body awareness: Height: Class room can be a place 

where the heights of children are recorded on the wall 

(behind the door) with a pencil. Children can record 

their height in centimetres, or feet and inches, in their 

math notebook at the start of the year. They can check it 

again half way through the year and at the end of the 

year. 

Weight: A weighing scale can be brought to the class at 

the start of the year and children can record their 

weight in their note book. They can repeat this activity 

at the end of the year.

The Teacher can discuss the results. Correlation between 

increase in height and weight can be observed in many 

cases.
Figure 15 Figure 16
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