




reetings	 to	 all	 readers.	 Let	 us	 hope	 that	 by	 the	 time	 this	 issue	

Gappears	before	your	eyes,	the	rains	will	have	covered	the	country.	

We	have,	yet	again	(we	hope;	please	tell	us	if	you	agree!),	a	rich	fare	

in	store	for	the	reader.	In	the	Features	section	we	have	the	first	part	of	an	

article	by	V	G	Tikekar,	dwelling	on	a	truly	remarkable	theorem	in	plane	

geometry,	aptly	called	“Morley’s	Miracle”.	This	is	followed	by	the	second	

part	of	Haneet	Gandhi’s	article	on	Tessellations,	and	following	that	is	a	

piece	by	Shailesh	Shirali	that	connects	with	the	“Fair	Division”	article	that	

appeared	in	the	March	2014	issue	of	At	Right	Angles,	showcasing	a	result	

in	 Euclidean	 geometry.	 Its	 simplicity	 and	 unexpectedness	 reveals	 the	

astonishing	richness	that	exists	in	the	field	of	plane	geometry.

In	 the	Classroom	section,	Punya	Mishra	and	Gaurav	Bhatnagar	 lead	us	

through	another	episode	of	“Art	and	Mathematics”,	underscoring	yet	again	

the	close	connection	between	these	two	ancient	pursuits	of	mankind	—	a	

link	which	is	so	rarely	dwelt	upon	in	our	classrooms.	Shikha	Takker	and	

Rossi	tell	us	about	the	rich	potential	of	puzzles	as	a	source	of	mathematics,	

and	 how	negative	 results	 are	 just	 as	 positive	 as	 ‘positive’	 results.	 In	 a	

similar	vein,	Gautham	Dayal	showcases	the	potential	that	‘toys’	like	the	

pentomino	set	hold	for	mathematics;	this	is	the	first	part	of	what	we	hope	

will	 be	 a	 many-part	 series.	 A	 Ramachandran	 tells	 us	 about	 some	

symmetries	 of	 fourth	 order	magic	 squares.	 Sneha	 Titus	 continues	 the	

series	 on	 the	 pedagogy	 of	 the	 CCE	 (continuous	 and	 comprehensive	

evaluation),	 while	 Swati	 Sircar	 draws	 out	 new	meanings	 of	 the	 word	

‘Unfold’.	The	latest	episode	of	“How	To	Prove	It”	dwells	on	a	property	of	the	

prime	numbers,	and	on	the	distinction	between	direct	and	indirect	proof.

Continuing	to	the	other	parts	of	this	issue:	Sangeeta	Gulati	writes	about	

the	free	cloud	application	“Desmos”,	one	of	many	such	online	applications	

that	 are	 beginning	 to	 appear	 these	 days,	which	 promise	 to	 enrich	 the	

teaching-learning	of	mathematics	at	the	secondary	and	higher	secondary	

levels.	(We	will	feature	more	such	applications	in	subsequent	issues	of	this	

magazine.)	 Keshav	Mukunda	writes	 about	 one	 of	 James	 Gleick’s	 best-

selling	books:	“The	Information:	A	History,	A	Theory,	A	Flood”	and	in	the	

Pullout,	Padmapriya	Shirali	tells	us	about	strategies	to	teach	Division	to	

children	in	primary	school.	

—	Shailesh	Shirali

From the 
Chief Editor’s Desk . . .
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I 
n Part I of this article (reference 1) we had noted how some 
regular polygons fit with each other to cover the plane without 
either gaps or overlaps, in arrangements called tilings. During our 

bus tour around the historic monuments of Delhi (described in the same 
article), we had seen many patterns based on simple rules, resulting in 
intricate tilings with great aesthetic appeal. Such patterns have been 
of interest to humans from ancient times, perhaps dating to the time 
when we started making shelters and used the logic of fitting rocks 
and weaving leaves to cover space while minimizing gaps. Over time, 
such endeavours took on artistic forms. Societies made use of tiles and 
patterns to emphasize different aspects of their culture. For example, 
Romans and some Mediterranean people portrayed human figures and 
natural scenes in their mosaic; the artistic impulse of the Arab artisans 
showed in their use of shape and colour to build complex geometric 
designs (as seen in the tiling patterns at Red Fort, Jama Masjid, Qutab 
Minar and Chandni Chowk; the Alhambra Palace in Granada, Spain, is 
another rich site of such patterns). Now, in Part II, we look at simple 
ways by which regular tessellations can be modified to make appealing 
patterns. We use simple techniques of colouring, shading or modifying a 
polygon to make interesting designs. The examples taken in this article 
are basic but lead to many possibilities that the readers can explore. 

fe
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e

A thing of beauty …

Covering the Plane 
with Repeated 
Patterns - 

Haneet Gandhi

Keywords: Pattern, tessellation, tiling, symmetry, art, architecture

Part II
… is a pattern forever
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Art work using modified tessellations
We now revisit the regular tessellations made of 
congruent copies of one kind of regular polygon: 
equilateral triangles, squares and regular 
hexagons. An examination of their properties 
and their symmetries will help us deconstruct 
and recast the polygons to produce irregular 
motifs that will tile. We shall see that the art and 
architecture of tiling needs technical skills and 
imaginative ideas. 

Modifying the regular quadrilateral
We start with the square. This shape has 
many symmetries that help us make irregular 

tessellating units. Some basic properties of this 
shape are: it has two pairs of equal, opposite and 
parallel sides; its adjacent sides are equal; it has 
rotational symmetry of order 4. We will now use 
combinations of these properties to modify our 
fundamental square tile.

To create the modified tile, carve out a piece along 
the length and translate it to the opposite parallel 
side. To make the design more interesting, chop 
off another piece along the width and translate 
it to the side opposite it. The pattern in Figure 
1(a)-1(b) is based on translational symmetry of a 
square.

Figure 1(c)

Figure 1(d)

Figure 1(a) 
The modified shape tessellates with translation symmetry.  

When embellished with some imaginative designs,the effect is 
enhanced.

By ornamenting the modified tile produced from a square (Figure 1(f)) with some enterprising art work,  
we get an interesting bird pattern (Figure 1(g).

Figure 1(b) 
Likewise, motifs can built on pairs of adjacent sides of a square  

to create tiles that show four-fold rotation symmetry, akin to that 
of the parent tile. Figures 1(c)-1(e)are some such patterns.

Figure 1(e) Figure 1(f) Figure 1(g)
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Modifying the regular triangle
The second set of Euclidean tessellations can be 
created from equilateral triangles. In this section 
we will explore one of the ways that was used to 
modify an equilateral triangle (Figure 2(a)-2(b)). 

Draw curved lines inside the triangle, from a 
vertex to the midpoint of a side. Carve out a 
section with this as a boundary, give it a half-
turn about the midpoint, and paste the piece on 
the outside of the other half length. Repeat this 

on the other two sides. Use the resulting tile as a 
stencil and create more tiles. We can now fit these 
tiles with one other, giving us a tessellation with 
rotational symmetry like that of the parent tile 
(the tessellation extends to the entire plane).

Modifying the regular hexagon
Regular hexagons can also be modified using their 
pairs of equal sides. The modification shown in 
Figure 3(a) is self-explanatory. 

Figure 2(a)

Figure 2(b)

Figure 2(c)

Figure 3(a)
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Decoding the tile
An interesting exercise with tessellations is to 
deconstruct the modified tile and to work out 
what must have been the parent tile. To do this, 
you will have to do the reverse of what was 
described above. Let’s begin with a commonly 
used tile, often seen on the pedestrian paths of 
Delhi Metro stations (Figure 4(a)). Note that at 
any vertex three tiles interlock with each other, 
presenting the same rotational symmetry as 
that of a regular hexagon. By doing some basic 
modifications on the pairs of opposite and parallel 
sides, we can reshape it to get the desired motif.

Figure 4(b) is trickier. We see that at each vertex 
three of the lizards meet, exhibiting three-fold 
rotational symmetry. Now we must untangle 
the shape. To do this, trace out the irregular 
shape (the lizard) and circumscribe it with the 
associated regular polygon (here it is a hexagon). 
Now you must identify the portions sliced off and 
shift them to get the desired shape. There is no 
loss of any portion, so the area of the modified tile 
is the same as that of the parent tile. 

In Figure 4(c) we see four fish interlocking at each 
vertex, showing rotational symmetry of order 4. It 
is thus easy to decode that the parent shape must 
have been a square.

The tessellation in Figure 4(d) was produced 
using equilateral triangles. Note the art work!

Time for the thinking cap:  
some exercises
Can you guess the parent tile that has been 
modified to make the given tessellations (Figure 
5(a)-5(e))? What properties of the parent tile 
helped in the modifications?

The best way to deconstruct these tessellations 
is to use tracing paper to draw the outline of the 
repeating unit. By placing the traced figure on its 
look-alike, we deduce the underlying symmetry.
The symmetries then help reveal the parent shape 
and the modifications done to it.

Figure 4(a)

Figure 4(b)

Figure 4(c)

Figure 4(d)

Figure 5(a)

Figure 5(b)
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Exploring further
Tessellations offer a huge range of mathematical explorations. One can only scratch the surface in a 
short article like this one. Some topics we have not explored relate to tessellations in which the units do 
not maintain the kind of repetition that equilateral triangles, squares and regular hexagons show. For 
example, there are tilings based on non-regular pentagons. Modifications in these polygons also make for 
intricate and artistic designs (Islamic star and the Penrose patterns) and can be explored further.
Middle grade teachers can use some of these examples for introductory work in tessellations. Concepts 
such as angle, area, perimeter, symmetry, closest packing, inscribed and circumscribed circles and more 
can be integrated and consolidated through such project work.

Further Reading
i.	 Grünbaum, B. & Shephard, G. C (1986), Tilings and Patterns. This is a comprehensive text on tessellations.  

It is a rich source of ideas that can be integrated in school geometry.

ii.	 Steinhaus, H. (1999), Mathematical Snapshots (Dover). Elementary yet engrossing.

iii.	 Critchlow, K (1970), Order in space: A Design Source Book, New York: Viking Press 
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Theorem 1 (Morley‘s Miracle). In any triangle,
the three points of intersection of the adjacent
angle trisectors closest to each side are the vertices
of an equilateral triangle.

The theorem is illustrated in Figure 1: the
trisectors of ∠𝐴𝐴 are lines 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴; those of ∠𝐵𝐵
are 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵; and those of ∠𝐶𝐶 are 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶.
The trisectors nearest to side 𝐵𝐵𝐵𝐵 meet at 𝑃𝑃, those
nearest to side 𝐶𝐶𝐶𝐶meet at 𝑄𝑄, and those nearest to
side 𝐴𝐴𝐴𝐴meet at 𝑅𝑅. The claim now is △𝑃𝑃𝑃𝑃𝑃𝑃 is
always equilateral, regardless of the shape of
△𝐴𝐴𝐴𝐴𝐴𝐴. Readers are encouraged to make trial
drawings of their own (this is very conveniently
done using GeoGebra) to see that the claim does
seem to be true.
The theorem is indeed a gem; but it is also a great
challenge to prove. In this three-part series we
describe a few of the many known proofs.
It appears that Morley discovered (and proved)
the result around the year 1899, during his
investigations on the differential geometry of
curves, but did not publish it anywhere. He did
mention it to a few people, though, and it
gradually became known. His proof did not use
the methods we associate with Euclidean
geometry; it was based on a study of the set of
cardioids that touch all the three sides of a
triangle! (A cardioid is a heart-shaped curve
generated by each point on a circle that rolls
without slipping on a �i�ed circle of equal radius.
You will see a portion of a cardioid on the surface
of a cup of milk or coffee when light shines upon
it; see Figure 2. So it is sometimes called the
‘coffee cup curve’.)

The �irst ‘pure geometry’proof to be published
was in 1909, by M.T. Naraniengar (who,
incidentally, was president of the Indian
Mathematical Society from 1930 to 1932, and
Editor of the Journal of the Indian Mathematical
Society from 1909 to 1927). In 1914 one more
such proof appeared, by Marr and Taylor. Over
the years a large number of beautiful proofs have
been found, of which special mention must be
made of one by John Conway (see [4]).
Naraniengar‘s proof This beautiful proof follows
an unusual strategy, one not seen too often in
geometric proofs.
The trisectors closest to side 𝐵𝐵𝐵𝐵 meet at 𝑃𝑃 (as
stated). Let the remaining two trisectors of ∠𝐵𝐵
and ∠𝐶𝐶 (respectively) meet at 𝑆𝑆. Join 𝑆𝑆𝑆𝑆 (see
Figure 3). In △𝑆𝑆𝑆𝑆𝑆𝑆, rays 𝐵𝐵𝐵𝐵 and 𝐶𝐶𝐶𝐶 are internal
angle bisectors, so 𝑃𝑃 is the incentre of △𝑆𝑆𝑆𝑆𝑆𝑆;
therefore, 𝑆𝑆𝑆𝑆 bisects ∠𝐵𝐵𝐵𝐵𝐵𝐵.
Now, locate points 𝑅𝑅� on 𝐵𝐵𝐵𝐵 and 𝑄𝑄� on 𝐶𝐶𝐶𝐶 such
that ∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘ and ∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘. Then
△𝑆𝑆𝑆𝑆𝑆𝑆� ≅ △𝑆𝑆𝑆𝑆𝑆𝑆� (angle-side-angle congruence),
so 𝑃𝑃𝑃𝑃� = 𝑃𝑃𝑃𝑃�. Hence △𝑃𝑃𝑃𝑃�𝑅𝑅� is an isosceles
triangle with a 60∘ angle; but this implies that it is
equilateral. Hence to prove Morley's theorem, it
suf�ices to show that 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴� are trisectors of
∠𝐴𝐴.
𝑆𝑆 is where the trisectors 𝐵𝐵𝐵𝐵, 𝐶𝐶𝐶𝐶meet.
Points 𝑅𝑅�, 𝑄𝑄�are located such that∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘
and ∠𝑄𝑄𝑄𝑄𝑄𝑄� = 30∘. So △𝑃𝑃𝑃𝑃�𝑅𝑅� is isosceles, and
therefore equilateral.
Now we must show that 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴� are angle
trisectors.
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that ∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘ and ∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘. Then
△𝑆𝑆𝑆𝑆𝑆𝑆� ≅ △𝑆𝑆𝑆𝑆𝑆𝑆� (angle-side-angle congruence),
so 𝑃𝑃𝑃𝑃� = 𝑃𝑃𝑃𝑃�. Hence △𝑃𝑃𝑃𝑃�𝑅𝑅� is an isosceles
triangle with a 60∘ angle; but this implies that it is
equilateral. Hence to prove Morley's theorem, it
suf�ices to show that 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴� are trisectors of
∠𝐴𝐴.
𝑆𝑆 is where the trisectors 𝐵𝐵𝐵𝐵, 𝐶𝐶𝐶𝐶meet.
Points 𝑅𝑅�, 𝑄𝑄�are located such that∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘
and ∠𝑄𝑄𝑄𝑄𝑄𝑄� = 30∘. So △𝑃𝑃𝑃𝑃�𝑅𝑅� is isosceles, and
therefore equilateral.
Now we must show that 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴� are angle
trisectors.
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Theorem 1 (Morley‘s Miracle). In any triangle,
the three points of intersection of the adjacent
angle trisectors closest to each side are the vertices
of an equilateral triangle.

The theorem is illustrated in Figure 1: the
trisectors of ∠𝐴𝐴 are lines 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴; those of ∠𝐵𝐵
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nearest to side 𝐶𝐶𝐶𝐶meet at 𝑄𝑄, and those nearest to
side 𝐴𝐴𝐴𝐴meet at 𝑅𝑅. The claim now is △𝑃𝑃𝑃𝑃𝑃𝑃 is
always equilateral, regardless of the shape of
△𝐴𝐴𝐴𝐴𝐴𝐴. Readers are encouraged to make trial
drawings of their own (this is very conveniently
done using GeoGebra) to see that the claim does
seem to be true.
The theorem is indeed a gem; but it is also a great
challenge to prove. In this three-part series we
describe a few of the many known proofs.
It appears that Morley discovered (and proved)
the result around the year 1899, during his
investigations on the differential geometry of
curves, but did not publish it anywhere. He did
mention it to a few people, though, and it
gradually became known. His proof did not use
the methods we associate with Euclidean
geometry; it was based on a study of the set of
cardioids that touch all the three sides of a
triangle! (A cardioid is a heart-shaped curve
generated by each point on a circle that rolls
without slipping on a �i�ed circle of equal radius.
You will see a portion of a cardioid on the surface
of a cup of milk or coffee when light shines upon
it; see Figure 2. So it is sometimes called the
‘coffee cup curve’.)

The �irst ‘pure geometry’proof to be published
was in 1909, by M.T. Naraniengar (who,
incidentally, was president of the Indian
Mathematical Society from 1930 to 1932, and
Editor of the Journal of the Indian Mathematical
Society from 1909 to 1927). In 1914 one more
such proof appeared, by Marr and Taylor. Over
the years a large number of beautiful proofs have
been found, of which special mention must be
made of one by John Conway (see [4]).
Naraniengar‘s proof This beautiful proof follows
an unusual strategy, one not seen too often in
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stated). Let the remaining two trisectors of ∠𝐵𝐵
and ∠𝐶𝐶 (respectively) meet at 𝑆𝑆. Join 𝑆𝑆𝑆𝑆 (see
Figure 3). In △𝑆𝑆𝑆𝑆𝑆𝑆, rays 𝐵𝐵𝐵𝐵 and 𝐶𝐶𝐶𝐶 are internal
angle bisectors, so 𝑃𝑃 is the incentre of △𝑆𝑆𝑆𝑆𝑆𝑆;
therefore, 𝑆𝑆𝑆𝑆 bisects ∠𝐵𝐵𝐵𝐵𝐵𝐵.
Now, locate points 𝑅𝑅� on 𝐵𝐵𝐵𝐵 and 𝑄𝑄� on 𝐶𝐶𝐶𝐶 such
that ∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘ and ∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘. Then
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so 𝑃𝑃𝑃𝑃� = 𝑃𝑃𝑃𝑃�. Hence △𝑃𝑃𝑃𝑃�𝑅𝑅� is an isosceles
triangle with a 60∘ angle; but this implies that it is
equilateral. Hence to prove Morley's theorem, it
suf�ices to show that 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴� are trisectors of
∠𝐴𝐴.
𝑆𝑆 is where the trisectors 𝐵𝐵𝐵𝐵, 𝐶𝐶𝐶𝐶meet.
Points 𝑅𝑅�, 𝑄𝑄�are located such that∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘
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F rank Morley (1860–1937) was British by birth (though he lived 
much of his life in USA) and an expert geometer. After getting a 
Sc.D. degree from Cambridge, he became Chairman of the Math 

Dept of the Johns Hopkins University in 1900. Prior to this, while working 
as a Professor of Mathematics at Haverford College (Pennsylvania), 
he had found a theorem in the field of Euclidean geometry (but using 
methods far removed from those of synthetic geometry). It was regarded 
by many as “marvelous but strange” because it related to the lines that 
trisect the internal angles of a triangle. Early in the nineteenth century 
it had been shown that it is not possible to trisect a general angle using 
straightedge and compass (thus settling a question that had been lying 
unresolved since Greek times), leading to a sort of psychological barrier 
in exploring any matter related to angle trisection. Morley’s theorem 
thus came as a shock to many lovers of mathematics. Over time the result 
became known as ‘Morley’s Miracle’.

Keywords: Angle trisectors, equilateral, cardioid

Morley’s 
Miracle - Part I

Lurking within any triangle . . .

. . . is an equilateral triangle

In this three-part series we study one of the most celebrated and 
beautiful theorems of Euclidean geometry, discovered at the dawn 
of the twentieth century. It has justly become known as ‘Morley’s 
Miracle’. It happens to be uncommonly challenging to prove! 

The inaugural July 2012 issue of this magazine had displayed 
a figure of the theorem on the cover, and we had promised to 
present a proof in a later issue.  
It is appropriate that we are making good this promise now.

V G Tikekar

Theorem 1 (Morley‘s Miracle). In any triangle,
the three points of intersection of the adjacent
angle trisectors closest to each side are the vertices
of an equilateral triangle.

The theorem is illustrated in Figure 1: the
trisectors of ∠𝐴𝐴 are lines 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴; those of ∠𝐵𝐵
are 𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵; and those of ∠𝐶𝐶 are 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶.
The trisectors nearest to side 𝐵𝐵𝐵𝐵 meet at 𝑃𝑃, those
nearest to side 𝐶𝐶𝐶𝐶meet at 𝑄𝑄, and those nearest to
side 𝐴𝐴𝐴𝐴meet at 𝑅𝑅. The claim now is △𝑃𝑃𝑃𝑃𝑃𝑃 is
always equilateral, regardless of the shape of
△𝐴𝐴𝐴𝐴𝐴𝐴. Readers are encouraged to make trial
drawings of their own (this is very conveniently
done using GeoGebra) to see that the claim does
seem to be true.
The theorem is indeed a gem; but it is also a great
challenge to prove. In this three-part series we
describe a few of the many known proofs.
It appears that Morley discovered (and proved)
the result around the year 1899, during his
investigations on the differential geometry of
curves, but did not publish it anywhere. He did
mention it to a few people, though, and it
gradually became known. His proof did not use
the methods we associate with Euclidean
geometry; it was based on a study of the set of
cardioids that touch all the three sides of a
triangle! (A cardioid is a heart-shaped curve
generated by each point on a circle that rolls
without slipping on a �i�ed circle of equal radius.
You will see a portion of a cardioid on the surface
of a cup of milk or coffee when light shines upon
it; see Figure 2. So it is sometimes called the
‘coffee cup curve’.)

The �irst ‘pure geometry’proof to be published
was in 1909, by M.T. Naraniengar (who,
incidentally, was president of the Indian
Mathematical Society from 1930 to 1932, and
Editor of the Journal of the Indian Mathematical
Society from 1909 to 1927). In 1914 one more
such proof appeared, by Marr and Taylor. Over
the years a large number of beautiful proofs have
been found, of which special mention must be
made of one by John Conway (see [4]).
Naraniengar‘s proof This beautiful proof follows
an unusual strategy, one not seen too often in
geometric proofs.
The trisectors closest to side 𝐵𝐵𝐵𝐵 meet at 𝑃𝑃 (as
stated). Let the remaining two trisectors of ∠𝐵𝐵
and ∠𝐶𝐶 (respectively) meet at 𝑆𝑆. Join 𝑆𝑆𝑆𝑆 (see
Figure 3). In △𝑆𝑆𝑆𝑆𝑆𝑆, rays 𝐵𝐵𝐵𝐵 and 𝐶𝐶𝐶𝐶 are internal
angle bisectors, so 𝑃𝑃 is the incentre of △𝑆𝑆𝑆𝑆𝑆𝑆;
therefore, 𝑆𝑆𝑆𝑆 bisects ∠𝐵𝐵𝐵𝐵𝐵𝐵.
Now, locate points 𝑅𝑅� on 𝐵𝐵𝐵𝐵 and 𝑄𝑄� on 𝐶𝐶𝐶𝐶 such
that ∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘ and ∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘. Then
△𝑆𝑆𝑆𝑆𝑆𝑆� ≅ △𝑆𝑆𝑆𝑆𝑆𝑆� (angle-side-angle congruence),
so 𝑃𝑃𝑃𝑃� = 𝑃𝑃𝑃𝑃�. Hence △𝑃𝑃𝑃𝑃�𝑅𝑅� is an isosceles
triangle with a 60∘ angle; but this implies that it is
equilateral. Hence to prove Morley's theorem, it
suf�ices to show that 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴� are trisectors of
∠𝐴𝐴.
𝑆𝑆 is where the trisectors 𝐵𝐵𝐵𝐵, 𝐶𝐶𝐶𝐶meet.
Points 𝑅𝑅�, 𝑄𝑄�are located such that∠𝑆𝑆𝑆𝑆𝑆𝑆� = 30∘
and ∠𝑄𝑄𝑄𝑄𝑄𝑄� = 30∘. So △𝑃𝑃𝑃𝑃�𝑅𝑅� is isosceles, and
therefore equilateral.
Now we must show that 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴� are angle
trisectors.
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Remarks. Naraniengar’s proof follows an unusual strategy: it starts with an equilateral triangle, then 
sets up a configuration similar to that constructed in the theorem. This clearly implies that the triangle 
constructed by Morley is equilateral. It is curious that a similar strategy is pursued in many pure-geometry 
proofs of Morley’s theorem: start with an equilateral triangle, then reconstruct a configuration similar to 
the original one. Perhaps the most spectacular of these is the proof by John Conway. In the next part we 
examine proofs that use trigonometry.
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of a Triangle
. . . is not hard to do!

In the March 2014 issue of At Right Angles, the article “A Fair Division” presented 
a study of a problem involving a geometrical division. A plot of land in the form 
of a scalene triangle is to be divided, as per the dictates of a whimsical will, into 
two parts having equal area as well as equal perimeter, using a straight dividing 
line. A simple argument shows that there always exists such a line; see [2]. In the 
mathematical literature, such a line has been called the equalizer of the triangle.  
It is known that any triangle has 1, 2 or 3 equalizers; see [4]. In this article we 
prove two results related to the equalizers.

Shailesh Shirali

In mathematics, breaking up . . .

Keywords: Triangle, perimeter, area, ratio, incentre, equalizer, quadratic, roots

The results mentioned in the preamble above are not only 
beautiful but remarkable as well, packing a good deal of 
‘surprise value’. Here they are: 

Theorem 1. An equalizer of a triangle necessarily passes through 
its incentre.

Theorem 2. A line passing through the incentre of a triangle 
divides its perimeter and area in the same ratio.

Theorem 1 is a known result (see [1], [3], [5]). We have not seen 
Theorem 2 anywhere in the literature. The proofs of both the 
theorems are easy to find. We invite you to find your own proofs 
before reading ahead.
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Proof of Theorem 2. The two results are proved
in nearly the same way, but we choose to prove

with incentre , with an arbitrary line ℓ through .
This line must pass through some two sides of the
triangle, and we shall suppose them to be and

. Let the points of intersection of ℓ with and
be and respectively; let and

. The theorem then claims the following:
Area of

Area of quadrilateral
= .

This may be written in the following equivalent
form:

Area of
Area of

= .

Let be the perimeter of .
Then we must show the following:

Area of
Area of

= .

Consider the fraction on the right side.
Multiplying both the numerator and denominator
by the in-radius , we get the following:

= = .

In the last expression, note that is the area of
(because if we treat as the base,

then its altitude is ) and, similarly, is the
area of . Hence is the area of

. Also, is the area of . (This is a
known formula. To prove it, note that the area of

is the sum of the areas of , and
. Now treat , and as the bases of

these triangles, and note that all three triangles
have the same altitude,
proof.) Hence the expression is equal to the ratio

Area of
Area of

.

But that is just what we wanted to show! Hence,
Theorem 2 is proved.

Proof of Theorem 1. We adopt a very similar
strategy. Let the line ℓ bisect the perimeter as
well as the area of . As earlier, we argue that
ℓ must intersect some two sides of the triangle; let
them be and , and let the points of
intersection of ℓ with these two sides be and
respectively. Let and .

The fact that ℓ is an equalizer implies that
and . Let the internal bisector

of meet ℓ at . We must then show that is
the incentre of               (See Figure 2.).

From , drop perpendiculars and to and
respectively. Since lies on the bisector of ,

it follows that ; let their common length
be . To show that is the incentre of is
equivalent to showing that equals the in-radius

of , and this is what we shall now show.

The areas of and are and
respectively, so the area of is .
Since , it follows that the area of is

. But since ℓ is an equalizer, the area of
is half the area of ; hence the area of
is . But the area of is also equal to . It
follows that and hence that is the incentre
of the triangle. Thus the equalizer passes through
the incentre of the triangle, as claimed.
Locating the Equalizers.  A candidate line ℓ for 
the post of equalizer of a triangle ABC must pass 
through some two sides of the triangle, say AB & AC. 
Let ℓ cut these two sides at P and Q respectively,
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. Let the points of intersection of ℓ with and
be and respectively; let and

. The theorem then claims the following:
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Area of quadrilateral
= .

This may be written in the following equivalent
form:

Area of
Area of

= .

Let be the perimeter of .
Then we must show the following:

Area of
Area of

= .

Consider the fraction on the right side.
Multiplying both the numerator and denominator
by the in-radius , we get the following:
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Area of
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.

But that is just what we wanted to show! Hence,
Theorem 2 is proved.

Proof of Theorem 1. We adopt a very similar
strategy. Let the line ℓ bisect the perimeter as
well as the area of . As earlier, we argue that
ℓ must intersect some two sides of the triangle; let
them be and , and let the points of
intersection of ℓ with these two sides be and
respectively. Let and .

The fact that ℓ is an equalizer implies that
and . Let the internal bisector

of meet ℓ at . We must then show that is
the incentre of               (See Figure 2.).

From , drop perpendiculars and to and
respectively. Since lies on the bisector of ,

it follows that ; let their common length
be . To show that is the incentre of is
equivalent to showing that equals the in-radius

of , and this is what we shall now show.

The areas of and are and
respectively, so the area of is .
Since , it follows that the area of is

. But since ℓ is an equalizer, the area of
is half the area of ; hence the area of
is . But the area of is also equal to . It
follows that and hence that is the incentre
of the triangle. Thus the equalizer passes through
the incentre of the triangle, as claimed.
Locating the Equalizers.  A candidate line ℓ for 
the post of equalizer of a triangle ABC must pass 
through some two sides of the triangle, say ABAC. 
Let ℓ cut these two sides at P and Q respectively,

with incentre , with an arbitrary line ℓ through .
This line must pass through some two sides of the
triangle, and we shall suppose them to be and

Theorem 2 first. Figure 1 shows a triangle

Figure 1
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Figure 2

and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥 (where 2𝑠𝑠𝑠  𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠 is the
perimeter of the triangle) and 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏, 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥
yield values for 𝑥𝑥𝑥 𝑥𝑥 satisfying the inequalities
0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦  .
Now if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥 and 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, the range of
possible values of 𝑥𝑥𝑥𝑥 is 0 ≤ 𝑥𝑥𝑥𝑥𝑥  �

�𝑠𝑠�; the least
possible value is taken when one of 𝑥𝑥𝑥 𝑥𝑥 is 0, and
the maximum possible value is taken when
𝑥𝑥𝑥𝑥𝑥𝑥    �

�𝑠𝑠 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑏𝑏𝑏𝑏 lies within this
interval. So we must have �

�𝑏𝑏𝑏𝑏𝑏  �
�𝑠𝑠�, i.e.,

𝑠𝑠� ≥ 2𝑏𝑏𝑏𝑏. If this inequality is strict, there is a
possibility of two solutions (𝑥𝑥𝑥 𝑥𝑥𝑥, while if equality
holds (𝑠𝑠� = 2𝑏𝑏𝑏𝑏), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦   to hold
(for 𝑃𝑃𝑃𝑃𝑃  must lie on sides 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝑥𝑥𝑥 𝑥𝑥 (got by solving the
equations 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏) are:

𝑥𝑥𝑥 𝑥𝑥𝑥  𝑠𝑠 𝑠 𝑠𝑠𝑠� − 2𝑏𝑏𝑏𝑏
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible solutions. Here 𝑠𝑠𝑠  𝑠,
so 𝑠𝑠� = 36.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏, so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 24
2 = 3 ± √3

Neither choice of sign works, because
3 + √3 > 4. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 30
2 = 3 ± √1.5

Since 3 − √1.5 < 3 and 3 < 3 + √1.5 < 5,
we get one equalizer here (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏 𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� < 2𝑏𝑏𝑏𝑏.
This does not yield any equalizers.

So for the 3,4,5   triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝑃𝑃𝑃𝑃 has been drawn, with
𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶       , and
𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶𝐶𝐶𝐶  𝐶 𝐶𝐶𝐶𝐶𝐶   𝐶𝐶𝐶𝐶  �

�(3 ×5) .
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible
solutions. Here 𝑠𝑠𝑠𝑠𝑠  , so 𝑠𝑠� = 144.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 112
2 =6±   2√2.

Neither choice of sign works, because
6+  2√2 > 8. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏  𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 126
2 =6±   √4.5.

Since 7 < 6+  √4.5 < 9, we get one
equalizer (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏𝑏 𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� = 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 144
2 =6 .

Since 6 < 9, we get an equalizer here. Since
𝑥𝑥𝑥𝑥𝑥   in this case, the two equalizers are
coincident.

4

and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥 (where 2𝑠𝑠𝑠  𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠 is the
perimeter of the triangle) and 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏, 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥
yield values for 𝑥𝑥𝑥 𝑥𝑥 satisfying the inequalities
0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦  .
Now if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥 and 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, the range of
possible values of 𝑥𝑥𝑥𝑥 is 0 ≤ 𝑥𝑥𝑥𝑥𝑥  �

�𝑠𝑠�; the least
possible value is taken when one of 𝑥𝑥𝑥 𝑥𝑥 is 0, and
the maximum possible value is taken when
𝑥𝑥𝑥𝑥𝑥𝑥    �

�𝑠𝑠 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑏𝑏𝑏𝑏 lies within this
interval. So we must have �

�𝑏𝑏𝑏𝑏𝑏  �
�𝑠𝑠�, i.e.,

𝑠𝑠� ≥ 2𝑏𝑏𝑏𝑏. If this inequality is strict, there is a
possibility of two solutions (𝑥𝑥𝑥 𝑥𝑥𝑥, while if equality
holds (𝑠𝑠� = 2𝑏𝑏𝑏𝑏), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦   to hold
(for 𝑃𝑃𝑃𝑃𝑃  must lie on sides 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝑥𝑥𝑥 𝑥𝑥 (got by solving the
equations 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏) are:

𝑥𝑥𝑥 𝑥𝑥𝑥  𝑠𝑠 𝑠 𝑠𝑠𝑠� − 2𝑏𝑏𝑏𝑏
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible solutions. Here 𝑠𝑠𝑠  𝑠,
so 𝑠𝑠� = 36.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏, so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 24
2 = 3 ± √3

Neither choice of sign works, because
3 + √3 > 4. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 30
2 = 3 ± √1.5

Since 3 − √1.5 < 3 and 3 < 3 + √1.5 < 5,
we get one equalizer here (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏 𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� < 2𝑏𝑏𝑏𝑏.
This does not yield any equalizers.

So for the 3,4,5   triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝑃𝑃𝑃𝑃 has been drawn, with
𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶       , and
𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶𝐶𝐶𝐶  𝐶 𝐶𝐶𝐶𝐶𝐶   𝐶𝐶𝐶𝐶  �

�(3 ×5) .
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible
solutions. Here 𝑠𝑠𝑠𝑠𝑠  , so 𝑠𝑠� = 144.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 112
2 =6±   2√2.

Neither choice of sign works, because
6+  2√2 > 8. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏  𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 126
2 =6±   √4.5.

Since 7 < 6+  √4.5 < 9, we get one
equalizer (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏𝑏 𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� = 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 144
2 =6 .

Since 6 < 9, we get an equalizer here. Since
𝑥𝑥𝑥𝑥𝑥   in this case, the two equalizers are
coincident.

4

and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥 (where 2𝑠𝑠𝑠  𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠 is the
perimeter of the triangle) and 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏, 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥
yield values for 𝑥𝑥𝑥 𝑥𝑥 satisfying the inequalities
0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦  .
Now if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥 and 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, the range of
possible values of 𝑥𝑥𝑥𝑥 is 0 ≤ 𝑥𝑥𝑥𝑥𝑥  �

�𝑠𝑠�; the least
possible value is taken when one of 𝑥𝑥𝑥 𝑥𝑥 is 0, and
the maximum possible value is taken when
𝑥𝑥𝑥𝑥𝑥𝑥    �

�𝑠𝑠 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑏𝑏𝑏𝑏 lies within this
interval. So we must have �

�𝑏𝑏𝑏𝑏𝑏  �
�𝑠𝑠�, i.e.,

𝑠𝑠� ≥ 2𝑏𝑏𝑏𝑏. If this inequality is strict, there is a
possibility of two solutions (𝑥𝑥𝑥 𝑥𝑥𝑥, while if equality
holds (𝑠𝑠� = 2𝑏𝑏𝑏𝑏), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦   to hold
(for 𝑃𝑃𝑃𝑃𝑃  must lie on sides 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝑥𝑥𝑥 𝑥𝑥 (got by solving the
equations 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏) are:

𝑥𝑥𝑥 𝑥𝑥𝑥  𝑠𝑠 𝑠 𝑠𝑠𝑠� − 2𝑏𝑏𝑏𝑏
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible solutions. Here 𝑠𝑠𝑠  𝑠,
so 𝑠𝑠� = 36.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏, so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 24
2 = 3 ± √3

Neither choice of sign works, because
3 + √3 > 4. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 30
2 = 3 ± √1.5

Since 3 − √1.5 < 3 and 3 < 3 + √1.5 < 5,
we get one equalizer here (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏 𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� < 2𝑏𝑏𝑏𝑏.
This does not yield any equalizers.

So for the 3,4,5   triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝑃𝑃𝑃𝑃 has been drawn, with
𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶       , and
𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶𝐶𝐶𝐶  𝐶 𝐶𝐶𝐶𝐶𝐶   𝐶𝐶𝐶𝐶  �

�(3 ×5) .
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible
solutions. Here 𝑠𝑠𝑠𝑠𝑠  , so 𝑠𝑠� = 144.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 112
2 =6±   2√2.

Neither choice of sign works, because
6+  2√2 > 8. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏  𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 126
2 =6±   √4.5.

Since 7 < 6+  √4.5 < 9, we get one
equalizer (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏𝑏 𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� = 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 144
2 =6 .

Since 6 < 9, we get an equalizer here. Since
𝑥𝑥𝑥𝑥𝑥   in this case, the two equalizers are
coincident.

4

and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥 (where 2𝑠𝑠𝑠  𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠 is the
perimeter of the triangle) and 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏, 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥
yield values for 𝑥𝑥𝑥 𝑥𝑥 satisfying the inequalities
0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦  .
Now if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥 and 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, the range of
possible values of 𝑥𝑥𝑥𝑥 is 0 ≤ 𝑥𝑥𝑥𝑥𝑥  �

�𝑠𝑠�; the least
possible value is taken when one of 𝑥𝑥𝑥 𝑥𝑥 is 0, and
the maximum possible value is taken when
𝑥𝑥𝑥𝑥𝑥𝑥    �

�𝑠𝑠 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑏𝑏𝑏𝑏 lies within this
interval. So we must have �

�𝑏𝑏𝑏𝑏𝑏  �
�𝑠𝑠�, i.e.,

𝑠𝑠� ≥ 2𝑏𝑏𝑏𝑏. If this inequality is strict, there is a
possibility of two solutions (𝑥𝑥𝑥 𝑥𝑥𝑥, while if equality
holds (𝑠𝑠� = 2𝑏𝑏𝑏𝑏), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦   to hold
(for 𝑃𝑃𝑃𝑃𝑃  must lie on sides 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝑥𝑥𝑥 𝑥𝑥 (got by solving the
equations 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏) are:

𝑥𝑥𝑥 𝑥𝑥𝑥  𝑠𝑠 𝑠 𝑠𝑠𝑠� − 2𝑏𝑏𝑏𝑏
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible solutions. Here 𝑠𝑠𝑠  𝑠,
so 𝑠𝑠� = 36.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏, so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 24
2 = 3 ± √3

Neither choice of sign works, because
3 + √3 > 4. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 30
2 = 3 ± √1.5

Since 3 − √1.5 < 3 and 3 < 3 + √1.5 < 5,
we get one equalizer here (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏 𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� < 2𝑏𝑏𝑏𝑏.
This does not yield any equalizers.

So for the 3,4,5   triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝑃𝑃𝑃𝑃 has been drawn, with
𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶       , and
𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶𝐶𝐶𝐶  𝐶 𝐶𝐶𝐶𝐶𝐶   𝐶𝐶𝐶𝐶  �

�(3 ×5) .
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible
solutions. Here 𝑠𝑠𝑠𝑠𝑠  , so 𝑠𝑠� = 144.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 112
2 =6±   2√2.

Neither choice of sign works, because
6+  2√2 > 8. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏  𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 126
2 =6±   √4.5.

Since 7 < 6+  √4.5 < 9, we get one
equalizer (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏𝑏 𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� = 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 144
2 =6 .

Since 6 < 9, we get an equalizer here. Since
𝑥𝑥𝑥𝑥𝑥   in this case, the two equalizers are
coincident.
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FIGURE 2.

and let AP = x, AQ = y. As ℓ is an equalizer, we have x+ y = s (where 2s = a+b+ c is the
perimeter of the triangle) and xy = 1

2bc. Hence an equalizer passing through sides AB and
AC exists if and only if the equations xy = 1

2bc, x+y = s yield values for x,y satisfying the
inequalities 0 ≤ x ≤ c and 0 ≤ y ≤ b.

Now if x,y ≥ 0 and x+y = s, the range of possible values of xy is 0 ≤ xy ≤ 1
4s2; the least

possible value is taken when one of x,y is 0, and the maximum possible value is taken
when x = y = 1

2s (because if the sum of two numbers is held fixed, their product is largest
when the numbers are equal). For a solution to exist, a necessary condition is that 1

2bc
lies within this interval. So we must have 1

2bc ≤ 1
4s2, i.e., s2 ≥ 2bc. If this inequality is

strict, there is a possibility of two solutions (x,y), while if equality holds (s2 = 2bc), there
is just one solution. Note that we say ‘possibility’ — because we also need the inequalities
0 ≤ x ≤ c and 0 ≤ y ≤ b to hold (for P,Q must lie on sides AB,AC respectively). The actual
values of x,y (got by solving the equations x+y = s, xy = 1

2bc) are:

x,y = s±
√

s2−2bc
2

.
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and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥 (where 2𝑠𝑠𝑠  𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠 is the
perimeter of the triangle) and 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏, 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥
yield values for 𝑥𝑥𝑥 𝑥𝑥 satisfying the inequalities
0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦  .
Now if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥 and 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, the range of
possible values of 𝑥𝑥𝑥𝑥 is 0 ≤ 𝑥𝑥𝑥𝑥𝑥  �

�𝑠𝑠�; the least
possible value is taken when one of 𝑥𝑥𝑥 𝑥𝑥 is 0, and
the maximum possible value is taken when
𝑥𝑥𝑥𝑥𝑥𝑥    �

�𝑠𝑠 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑏𝑏𝑏𝑏 lies within this
interval. So we must have �

�𝑏𝑏𝑏𝑏𝑏  �
�𝑠𝑠�, i.e.,

𝑠𝑠� ≥ 2𝑏𝑏𝑏𝑏. If this inequality is strict, there is a
possibility of two solutions (𝑥𝑥𝑥 𝑥𝑥𝑥, while if equality
holds (𝑠𝑠� = 2𝑏𝑏𝑏𝑏), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝑥𝑥𝑥𝑥𝑥   and 0 ≤ 𝑦𝑦𝑦𝑦𝑦   to hold
(for 𝑃𝑃𝑃𝑃𝑃  must lie on sides 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝑥𝑥𝑥 𝑥𝑥 (got by solving the
equations 𝑥𝑥 𝑥 𝑥𝑥𝑥  𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥  �

�𝑏𝑏𝑏𝑏) are:

𝑥𝑥𝑥 𝑥𝑥𝑥  𝑠𝑠 𝑠 𝑠𝑠𝑠� − 2𝑏𝑏𝑏𝑏
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible solutions. Here 𝑠𝑠𝑠  𝑠,
so 𝑠𝑠� = 36.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏, so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 24
2 = 3 ± √3

Neither choice of sign works, because
3 + √3 > 4. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  6±  √36 − 30
2 = 3 ± √1.5

Since 3 − √1.5 < 3 and 3 < 3 + √1.5 < 5,
we get one equalizer here (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏 𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� < 2𝑏𝑏𝑏𝑏.
This does not yield any equalizers.

So for the 3,4,5   triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝑃𝑃𝑃𝑃 has been drawn, with
𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶    √1.5. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶       , and
𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶𝐶𝐶𝐶  𝐶 𝐶𝐶𝐶𝐶𝐶   𝐶𝐶𝐶𝐶  �

�(3 ×5) .
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑏𝑏𝑏𝑏𝑏 𝑏, and check for feasible
solutions. Here 𝑠𝑠𝑠𝑠𝑠  , so 𝑠𝑠� = 144.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏  𝑏𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 112
2 =6±   2√2.

Neither choice of sign works, because
6+  2√2 > 8. So we do not get any equalizer
associated with this pair of sides.

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏  𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , so 𝑠𝑠� > 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 126
2 =6±   √4.5.

Since 7 < 6+  √4.5 < 9, we get one
equalizer (but only one).

• {𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 𝑏𝑏𝑏 𝑏. Here 2𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏, so 𝑠𝑠� = 2𝑏𝑏𝑏𝑏.
Solving for 𝑥𝑥𝑥 𝑥𝑥, we get:

𝑥𝑥𝑥 𝑥𝑥𝑥  12 ± √144 − 144
2 =6 .

Since 6 < 9, we get an equalizer here. Since
𝑥𝑥𝑥𝑥𝑥   in this case, the two equalizers are
coincident.
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So for the 7, 8, 9 triangle, there exist two equalizers. Both of them have been sketched in Figure 4 
(segments P1 Q2 and P2 Q2). 

An equilateral triangle obviously has three equalizers (all three medians). So we may anticipate that as 
the triangle changes in shape from a high degree of scalene-ness towards equilateral-ness, the number of 
equalizers changes from 1 to 3. A complete analysis of how this change happens is given in [4]. However, 
we do not try to prove this here.
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Introduction 

Often puzzles are considered as games or ‘time-off’ from routine 
mathematics in school classrooms. The objective is generally to find who 
solves the puzzle, how quickly and what is the shortest and probably the 
quickest way of solving it. But despite knowing that they are mathematical in 
nature, they are not seen as ‘connected with hard core mathematics’. 

Many of these puzzles contain all the ingredients and themes of mathematics: 
proof, generalization, pattern recognition, assuming the truth of a statement 
and arriving at a contradiction, non-existence of a solution, etc. In this article, 
we present a puzzle which was used to discuss some core mathematical 
ideas with participants at two public programs. The participants ranged from 
fourth standard students to B Ed graduates. For these programs, we designed 
a few puzzles which required unconventional methods of problem solving. 
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No dead-ends  

Learning  
mathematics  
through puzzles 
 
No solution is also a good solution

Rossi & Shikha

Mathematical puzzles are generally perceived to be at the periphery of mathematics, 
and not part of the core of the discipline. This may be related to the fact that we 
sometimes come across puzzles that have no solution. The general expectation 
among mathematics practitioners and school children seems to be that problems in 
mathematics should have a solution. In this paper, we argue that puzzles can be an 
important source of learning some core mathematical ideas. We present an exemplar 
to justify our claim that problems with no solutions are as significant to the teaching 
and learning of  mathematics as problems with solutions.  
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By ‘unconventional’ we mean that solving 
these puzzles was not necessarily confined to 
elementary mathematics, a well defined syllabus, 
or an algorithmic solution. Central to our 
considerations was also that these puzzles should 
be able to create an opportunity for students to 
learn some important concepts in mathematics. 

Puzzle: Circles and counters 
In [1, p. 125] we came across the following puzzle. 

A circle is divided into six sectors and each of them 
has a counter or button in it (see Figure 1). You 
have to get all the counters into one sector using 
jumps, following these two rules: (i) In a single 
jump, a counter can be moved only to an adjacent 
sector. (ii) Each move consists of two jumps.

.  

Figure 1. Circle divided into 6 sectors  
with a counter in each sector 

The focus of this puzzle is on parity and 
invariance, and the solution proposed is that there 
is no solution. The proof for this assertion goes as 
follows. 

Number the sectors from 1 to 6. For each sector, 
find the product of its number and the number of 
counters in it. Let the sum of these products be s. 
Call this sum the ‘score’. At the start of the game, 
each sector has one counter, so the score is 1 + 2 + 
3 + 4 + 5 + 6 = 21. 

After a move in which one counter jumps from, 
say, 2 to 3 and the other counter jumps from,  
say, 4 to 5, the new score would be  
1 + 0 + (2×3) + 0 + (2×5) + 6 =  23. Note 
that  the score has changed by 2. A little thought 
will reveal that no matter how the moves are 
made, the score always changes by an even 
number; more specifically, by 0, 2, 4 or 6. 

Since the starting value of s is 21, an odd number, 
the value of s will be odd at every stage. But if all 
the counters reach one sector, the value of s will 
surely be a multiple of 6 at that stage, and hence 
even. Therefore the puzzle can have no solution. 

We found it interesting that the puzzle did not 
have a solution. Then we wondered how children 
and teachers would look at a mathematical 
problem like this which does not have a solution. 
Often, such problems are rejected as being wrong 
or as having inadequate information. However, 
realising that “no solution is also a valid solution”, 
mathematically, is interesting and important for 
teachers and students to know.  

Also, we can assert that a problem does not have a 
solution only when we have a clear proof for such 
a claim. 

These are both important mathematical ideas: 
first, that “no solution” is a valid state of affairs in 
mathematics, and second, the need for a proof for 
the claim that a problem does not have a solution. 

Both these matters are currently not a part of our 
understanding of teaching mathematics especially 
at the elementary level. Proofs are considered 
to be abstract and are introduced very late in 
the school curriculum. Also, problems with no 
solution or multiple solutions are rarely discussed. 

As we were working with the puzzle with these 
considerations in mind, we started thinking about 
the different variables involved and how changing 
them would change the problem. The variables 
included the number of counters and its positions 
and of jumps. 

For example, in the puzzle, there is just one 
counter in each sector. What if we have two or 
more counters instead? What if the number of 
jumps in each move is increased? 

When we worked through these variations we 
found neither of them so interesting. Let us 
explain why. Placing more counters in each sector 
does not make it more challenging but rather a 
tiring exercise. Also, this would not be a suitable 
extension for very young children. (We were 
targeting young children because they had not yet 
been exposed to ideas of ‘proof and proving’.) So 
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programs, we designed a few puzzles which required unconventional methods of problem
solving.

By ‘unconventional’ we mean that solving these puzzles was not necessarily confined
to elementary mathematics, a well defined syllabus, or an algorithmic solution. Central to
our considerations was also that these puzzles should be able to create an opportunity for
students to learn some important concepts in mathematics.

2. PUZZLE: CIRCLES AND COUNTERS

In [1, p. 125] we came across the following puzzle.

A circle is divided into six sectors and each of them has a counter or button in it (see
Figure 1). You have to get all the counters into one sector using jumps, obeying these two
rules: (i) In a single jump, a counter can be moved only to an adjacent sector. (ii) Each
move consists of moving any two different counters, in the way described.

FIGURE 1. Circle divided into 6 sectors with a counter in each sector

The focus of this puzzle is on parity and invariance, and the solution proposed is that
there is no solution. The proof for this assertion goes as follows.

Number the sectors from 1 to 6. For each sector, find the product of its number and the
number of counters in it. Now find s, the sum of these products. Call this sum the ‘score’.
At the start of the game, each sector has one counter, so the score is 1+2+3+4+5+6= 21.

After a move in which one counter jumps from, say, 2 to 3 and the other counter jumps
from, say, 4 to 5, the new score would be 1+0+(2×3)+0+(2×5)+6 = 23. Note that
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we were doubtful whether this would make the 
puzzle more engaging. 

For the second, we found that number of jumps 
can be either odd or even. The odd number of 
jumps will make it similar to moving in jumps of 
1, and even would be in terms of jumps of 2. There 
would be nothing puzzling here! 

However, there was another extension we found 
to be more interesting: varying the number of 
sectors in the circle. We tried to see if there is a 
way to complete the task for a circle divided into 
n sectors, for n between 2 and 10. Then we looked 
for a pattern. While working on the extended 
puzzle, we noted some interesting mathematical 
processes. This included playing and identifying 
a generalised pattern, finding the values of n for 
which the solution exists and for which a solution 
does not exist, finding proofs in each case, etc. This 
is where we experienced all the ingredients of 
mathematical engagement. 

Modified problem and students’  
solutions 
We posed the modified problem to students of 
different age levels. We then examined their 
strategies. The problem posed was: 

A circle is divided into n sectors and each of them 
has a counter or button. You must get all of them 
into a single sector using jumps, following these 
rules: (i) In a single jump, a counter can be moved 
only to an adjacent sector. (ii) Each move consists 
of two jumps. For which values of n can we get all 
the counters into a single sector? Why do you say 
so? 

Being able to interact with a large group of 
students from diverse classrooms was a great  
advantage, and we got this opportunity from two 
fora. 

One occasion was the ‘National Science Day’ at 
the Homi Bhabha Centre for Science Education, 
Mumbai, and the other was a session in the 
popular lecture series called ‘Chai and Why’. (This 
is an outreach public activity conducted by TIFR. 
It consists of talks by members of TIFR and is held 
every second and fourth Sunday of each month 
at Prithvi Theatre, Juhu, and at Ruparel College, 

Matunga, Mumbai respectively. The aim of ‘Chai 
and Why’ is essentially to popularize mathematics 
and science.) 

’ 

We interacted with a wide range of participants, 
from children to adults (including mathematicians, 
physicists, etc.). We were keen to see what kinds 
of proofs would come forth from learners of 
different age groups. We share two interesting 
and representative solutions. 

Given enough time, almost all students, even those 
in grade 4, came up with a generalised pattern. 
They figured out that a solution to the problem 
exists for all odd numbers and for numbers 
divisible by 4. But many of them could not state 
confidently that a solution does not exist for even 
numbers not divisible by 4, such as 10. Also, when 
asked how they could say that a solution exists 
for all numbers divisible by 4, most students just 
stuck to examples with smaller numbers. Their 
general way of solving the problem was trial 
and error: looking for a solution for n < 10, then 
stating the generalisation. None of them could 
explain comfortably why a solution does not exist 
for n = 2 and n = 6. 

One student came close to finding a proof. He 
came up with the following observation for 
what made n = 6 different from the rest. He said: 
“Suppose we choose one sector (the target) as 
the place where all buttons must end up. This 
implies that the button on that sector requires 0 

Images from ‘Chai and Why
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jumps to reach there. Similarly, the buttons in its 
(two) adjacent sectors require 1 jump each; the 
buttons in the sectors adjacent to those require 
2 jumps each; etc. Working this way we find that 
the total number of jumps required to reach the 
final sector is odd for n = 6 or 2, but even for other 
values of n.” Of course, the sector that requires 
1 jump to reach the final sector would require 5 
jumps if moved in the opposite direction. But this 
maintains the parity of the total. (‘Parity’ refers 
to whether an integer is odd or even. Note that 
adding an even number to an integer maintains 
its parity, and adding an odd number reverses 
its parity. ‘Parity invariance’ is a commonly used 
theme in solving problems and in constructing 
proofs.) 

Although he stopped there, it turns out that 
his observation was a good starting point for 
a legitimate proof; given more time, he would 
probably have completed it. To understand and 
extend his proof, we continue the argument. 
For odd n, if a sector requires an odd number 
of jumps to reach the target in one direction, it 
requires an even number of jumps if moved in the 
opposite direction. Hence we can always end up 
in the target sector by choosing for each button 
an appropriate direction so as to ensure an even 
number of jumps. For n divisible by 4, the sector 
diametrically opposite the target requires an 
even number of jumps to reach the target. The 
remaining sectors are symmetrically placed. Thus, 
every such sector has a corresponding sector with 
the same number (of jumps to reach the target).  

Our proof

Figure 2. Circle divided into n = 5 sectors with  
bottom sector as ‘target’ 

Our proof was on similar lines as that of the 
student. Let n be the number of sectors of the 
circle. Then n is either odd, or divisible by 4, or 
even but not divisible by 4.

The case when n is odd: Let us choose one sector 
as the target (see Figure 2). Now we have an even 
number of buttons to be moved to that sector. 
These sectors are placed symmetrically and can 
thus be moved to the target in steps of two jumps: 
one jump of a button towards the target, followed 
by another jump by its corresponding button in a 
symmetric manner. The status of the puzzle after 
the first move is shown in Figure 3. Therefore, we 
can always end with all the buttons in a common 
sector if n is odd.

Figure 3. State of the puzzle for n = 5 after  
one move (i.e., two jumps)

The case when n is divisible by 4: Designate one 
sector as the target. Since n is a multiple of 4, the 
counter diametrically opposite to the target would 
require, and can be moved by, an even number of 
jumps to reach there. Now again, we are left with 
an even number of buttons placed symmetrically. 
These can be moved to the target using the same 
method as described above for the case of the 
circle divided into an odd number of sectors. 
Therefore we have a solution for n divisible by 4 
(similar to the student’s proof).

The case when n is even but not divisible by 
4: For n = 6, we cannot use the above argument. 
Of course, this is not a proof. To prove that we 
cannot have a solution for such values of n, we 
assign a number to each sector, in the following 
way. Beginning with any sector, we number them 
0 and 1 in alternation. Since n is even, this is 
possible; further, each ‘1’ will only have a ‘0’ as its 
neighbour, and vice versa.
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Now for each sector we find the product of its 
number and the number of counters in it, and 
find the sum (s) of the products. At the start, since 
each of the sectors has one counter, s would be 
1+0+1+0+1+0+... = n/2, an odd number. With 
each move, we make two jumps — in each jump, a 
button would move from 0 to 1 or from 1 to 0. So, 
every jump changes s from an even number to an 
odd number or the reverse; that is, it reverses its 
parity.

Hence two jumps maintain the parity. Since the 
number of sectors is not divisible by 4, we have an 
odd number of zeros and an odd number of ones. 
Hence we begin with s being odd. The parity stays 
invariant. However, a solution to the problem 
would imply that all buttons come to a common 
sector thereby making s even. Therefore a solution 
does not exist.
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Implications of this activity
The aim of the activity was to use ‘concept based 
puzzles’ to create challenges that would encourage 
the development of formal proof among children.

The fact that some students articulated 
justifications behind the non-existence of a 
solution gave us some evidence that mathematical 
puzzles can drive students to perform problem 
solving activities that are consistent with the 
nature of mathematics.

The process of drawing upon a puzzle to identify 
important mathematical ideas and using them 
to create the need for proof was interesting 
and insightful. We are finding it possible to 
engage even very young children in the idea of 
proof, and engaging them with the centrality of 
proof in mathematics. The scope for learners to 
come up with their own proofs would create a 
legitimate participation in the culture of doing 
mathematics and such an environment can make 
them appreciate the significance of rigour in 
mathematics.
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This idea of repeating a similar shape (often at 
a different scale) over and over again, is called 
self-similarity. In other words, a self-similar image 
contains copies of itself at smaller scales. A simple 
example appears in Figure 2: a repeated pattern 
for a square that is copied, rotated and shrunk by 
a factor of 1/√2.

Figure 2. A self–similar design 

Of course you can do this with typographical 
designs as well, such as the design for the word 
“Zoom” in Figure 3. 

Figure 3. A self-similar ambigram for ZOOM 

Examining self-similarity leads to a discussion of 
infinity, iteration and recursion, some of the ideas 
we discuss in this article. 

Before taking a serious look at self-similarity, we 
present (see Figure 4) a rotational-ambigram 
of “self-similarity,” which is not self-similar. 
However, below it is another version of the 
same design, where the word “self” is made up 
of little rotationally symmetric pieces of “self” 
and similarity is made up of little ambigrams of 
“similarity” and, most importantly the hyphen 
between the words is the complete ambigram 
for “self-similarity.” So this leads to the question: 
What do you think the hyphen in the hyphen is 
made of?

Self similarity and Fractals 
Self-similar shapes are all around us, from clouds 
to roots, from branches on trees to coastlines, 
from river deltas to mountains. The idea of 
self-similarity was popularized by Benoit B. 
Mandelbrot, whose 1982 book “The Fractal 
Geometry of Nature” showed how self-similar 
objects known as ‘fractals’ can be used to model 
‘rough’ surfaces such as mountains and coast-
lines. Mandelbrot used examples such as these to 
explain how when you measure a coastline the 
length of the line would increase as you reduced 
the unit of measurement. Such convoluted folds 
upon folds that lead to increased length (or in the 
case of 3-d objects, increased surface area) can be 
seen in the structure of the alveoli in the human 
lungs as well as in the inside of our intestines. 
The volume does not increase by much, while the 
surface area increases without limit. 

Figure 5 is an ambigram of “Fractal” which 
illustrates Mandelbrot’s own definition of fractals: 
A fractal denotes a geometric shape that breaks 
into parts, each a small scale model of the original.

Figure 4: (Top) A rotational ambigram for 
“self-similarity.” (Bottom) The strokes in the 
first ambigram are now replaced by words. 
The “self” is made up of tiny versions of 
“self” and “similarity” of smaller versions of 
“similarity” (each of which are ambigrams of 
course). That is not all, the hyphen is made 
up of a tiny version of the entire design! 
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Figure 5: A self-similar, fractal ambigram for “Fractal”

In other words, fractals are geometrical shapes 
that exhibit invariance under scaling i.e. a piece of 
the whole, if enlarged, has the same geometrical 
features as the entire object itself. The design of 
Figure 6 is an artistic rendition of a fractal-like 
structure for the word “Mandelbrot”.

Figure 6. A fractal ambigram for “Mandelbrot”  

Speaking of Mandelbrot, what does the middle 
initial “B” in Benoit B. Mandelbrot stand for? A 
clue is provided in Figure 7.  

Figure 7. Puzzle: What does the B in “Benoit B 
Mandelbrot” stand for? 

Answer at the end of the article.

It is clear that the idea of infinity and infinite 
processes are an important aspect of fractals and 
self-similarity. We now examine the concept of 
infinity typographically and mathematically. 

Infinity 
Infinity means without end, or limitless. 
Mathematically speaking, a finite set has a definite 
number of elements.  An infinite set is a set that 
is not finite. The word infinity is also used for 
describing a quantity that grows bigger and 
bigger, without limit, or a process which does not 
stop.  

Figure 8 has two designs for “infinity” subtly 
different from each other. Notice how in the first 
design the chain is created by “in” mapping to 
itself and “finity” mapping to itself. In contrast 
the second design breaks the word up differently, 
mapping “ity” to “in” and “fin” to itself.

Figure 8. Two ambigrams for “infinity”.  
The first wraps around a circle and the 

second says infinity by word and symbol!
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The first design wraps “infinity” around a circle. 
You can go round and round in a circle, and keep 
going on, so a circle can be said to represent an 
infinite path but in a finite and understandable 
manner. The second design is shaped like the 
symbol for infinity! 

In keeping with the idea of self-similarity here 
are two other designs of the word “infinite”. 
In fact there is a deeper play on the word as it 
emphasizes the finite that is in the infinite. The 
two designs in Figure 9 capture slightly different 
aspects of the design. The first focuses on mapping 
the design onto a sphere while the second is a 
self-similar shape that can be interpreted in two 
different ways. Either being made of an infinite 
repetition of the word “finite” or the infinite 
repetition of the word “infinite” (where the shape 
that reads as the last “e” in the word “finite” can be 
read as “in” in the word “infinite” when rotated by 
90 degrees). 

Infinities are difficult to grasp and when we try to 
apply the rules that worked with finite quantities 
things often go wrong. For instance, in an infinite 
set, a part of the set can be equal to the whole! The 
simplest example is the set of natural numbers, 
and its subset, the set of even numbers.  

The set ℕ = {1, 2, 3, 4, ...} of natural numbers is 
infinite. Now consider the set of even numbers  
𝔼 = {2, 4, 6, 8, ...} Clearly, the set of even numbers 
has half the number of elements of the set of 
natural numbers, doesn’t it? 

But not so quick! Things are tricky when it comes 
to infinite sets. We need to understand what it 
means for two sets to have an equal number of 
elements. Two sets have an equal number of 
elements when they can be put in one to one 
correspondence with each other. Think of children 
sitting on chairs. If each child can find a chair to 
sit on, and no chair is left over, then we know that 
each child corresponds to a chair, and the number 
of children is the same as the number of chairs.

Returning to the natural numbers, each number n 
in ℕ corresponds to the number 2n in 𝔼 . So every 
element of ℕ corresponds to an element of 𝔼 and 
vice versa.

Thus though one set may intuitively look like it is 
half the other it is in fact not so! Our intuition is 
wrong, the sets 𝔼 and N have the same number of 
elements. Since 𝔼 is a part of ℕ, you can see that 
when it comes to infinite sets, a part can be equal 

Figure 9. Two ambigrams for “infinite”, a play on the finite in infinite. Is the  
second design an infinite repetition of the word “finite” or “infinite?” 
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to the whole. In fact, this part-whole equivalence 
has sometimes been used to define an infinite set.

Another interesting example where a part is equal 
to the whole, is provided by a fractal known as the 
Sierpinski Carpet.

The Sierpinski Carpet
The Sierpinski Carpet, like all fractals, is generated 
using the process of iteration. We begin with a 
simple rule and apply it over and over again.

Begin with a unit square, and divide the square 
into 9 equal parts. Remove the middle square. 
Now for each of the remaining 8 squares, we do 
the same thing. Break it into 9 equal parts and 
remove the middle square. Keep going on in this 
way till you get this infinitely filigreed Swiss-
cheese effect. See Figure 10 for the first couple of 
steps and then the fifth stage of the carpet.

Figure 10. The Sierpinski Carpet

Which leads to the question: What is the total area 
of all the holes? Here is one way of computing the 
area of the holes in the Sierpinski Carpet. The first 
hole has area 1/9. In Step 2, you will remove 8 
holes, each with area 1/9 th of the smaller square; 
so you will remove 8 holes with area 1/92  or 

 8/92.  In Step 3, for each of the smaller 8 
holes, we remove 8 further holes with area 1/93, 
so the area removed is 82/93.  In this manner it is 
easy to see that the total area of the hole is:

To see why, we use the formula for the sum of the 
infinite Geometric Series:

How crazy is that! The area of the holes (taking 
away just 1/9th of a square at a time) is equal to 
the area of the unit square! Thus the hole is equal 
to the whole!

This seemingly contradictory statement has 
inspired the following design—where the words 
whole and hole are mapped onto a square – with 
the letter o representing the hole in the Sierpinski 
carpet. Of course as you zoom in, the whole and 
hole keep interchanging. We call this design  
(w)hole in One (in keeping with the idea the area 
of the hole is equal to the whole of the unit square).

Figure 11. Fractal Ambigrams for “WHOLE” and 
“HOLE”, a (w)hole in One.

The repetitive process of applying a set of 
simple rules that leads amazing designs like the 
Sierpinski carpet (and other fractal shapes) is 
called iteration.
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Graphical interpretations of iteration
The process of iteration can be used to generate 
self-similar shapes. Graphically, we simply 
superimpose the original shape with a suitably 
scaled down version of the initial shape, and then 
repeat the process. The nested squares of Figure 2 
is perhaps the simplest example of creating a self-
similar structure using this process. 

Essentially, such figures emerge from the repeated 
application of a series of simple steps—a program 
as it were, applied iteratively to the result of the 
previously applied rule. In this manner we can 
arrive at shapes and objects that are visually rich 
and complex.

Here is another, more creative, way to graphically 
interpret the idea of iteration.

Figure 12: An ambigram of “iteration”,  
illustrating a graphical approach to a part can be 

equal to the whole. 

At one level the first ambigram in Figure 12 can 
be read as a rotational ambigram for the word 
“iteration.” However if you zoom into the design 
(see zoomed figures below) you will see that each 
of the strokes is made of smaller strokes that in 
turn spell iteration.

In fact you can go down one more level and see 
“iteration” all over again. Theoretically we could 
do this forever, (within the limits of computational 
technology and visual resolution of screen, print 
and eye!). A similar idea is explored in the design 
of the word “self-similarity” (Figure 4) specifically 
in the design of the hyphen.

There are other fascinating examples of such 
iterative techniques, one of which we examine 
next.

The Golden Mean
Another example of a mathematically and visually 
interesting structure is the Golden Rectangle (and 
its close relative the Golden Mean). The Golden 
Mean appears as the ratio of the sides of a Golden 
Rectangle. A Golden Rectangle is such that if you 
take out the largest square from it, the sides of the 
resulting rectangle are in the same ratio as the 
original rectangle. Suppose the sides of the Golden 
Rectangle are a and b, where b is smaller than a. 
The ratio a/b turns out to be the Golden Mean 
(denoted by �). The largest square will be of side 
b. Once you remove it, the sides of the resulting 
rectangle are b and a  ̵ b. From this, it is easy to 
calculate the ratio a/b and find that it equals .

If you begin with a Golden Rectangle and keep 
removing the squares, you will get a nested 
series of Golden Rectangles (see the underlying 
rectangles in Figure 14). The resulting figure 
shows self-similarity.

You may connect the diagonals using a spiral to 
obtain an approximation to what is called the 
Golden Spiral. Figure 13 shows an ambigram of 
“Golden Mean”, placed in the form of a Golden 
Spiral inside a series of nested Golden Rectangles.
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If you begin with a Golden Rectangle and keep removing the squares, you will get a 
nested series of Golden Rectangles (see the underlying rectangles in Figure 14). The 
resulting figure shows self-similarity.  
 
You may connect the diagonals using a spiral to obtain an approximation to what is 
called the Golden Spiral. Figure 13 shows an ambigram of  “Golden Mean”, placed in 
the form of a Golden Spiral inside a series of nested Golden Rectangles. 
 

 
 
Figure 13. A rotationally symmetric chain-ambigram for the phrase 
“Golden Mean” mapped onto a Golden Spiral.  
 

 
The Golden Mean appears in different contexts, in mathematics, in artistic circles, and 
even in the real world. It is closely related to the Fibonacci Numbers, namely 
                   . Note that the Fibonacci Numbers begin with   and  , and 
then each number the sum of the previous two numbers. If you take the ratio of 
successive Fibonacci numbers, the ratio converges to the Golden Mean.  
 
The Fibonacci numbers are an example of a recursively defined sequence, where a 
few initial terms are defined, and then the sequence is built up by using the definition 
of the previous term (or terms).  
 
Recursion and Pascal’s Triangle 
 
Recursion is similar to iteration. While iteration involves applying a simple rule to an 
object repeatedly, like in the creation of the Sierpinski Carpet, recursion involves 
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Figure 13. A rotationally symmetric chain-ambigram 
for the phrase “Golden Mean” mapped onto a  

Golden Spiral.

The Golden Mean appears in different contexts, 
in mathematics, in artistic circles, and even in the 
real world. It is closely related to the Fibonacci 
Numbers, namely 1, 1, 2, 3, 5, 8, 13, 21, .... Note 
that the Fibonacci Numbers begin with 1 and 1, 
and then each number the sum of the previous 
two numbers. If you take the ratio of successive 
Fibonacci numbers, the ratio converges to the 
Golden Mean.

The Fibonacci numbers are an example of a 
recursively defined sequence, where a few initial 
terms are defined, and then the sequence is built 
up by using the definition of the previous term  
(or terms).

Recursion and Pascal’s Triangle
Recursion is similar to iteration. While iteration 
involves applying a simple rule to an object 
repeatedly, like in the creation of the Sierpinski 
Carpet, recursion involves using the results of a 
previous calculation in finding the next value, as in 
the definition of the Fibonacci numbers.

Fractals are usually obtained by iteration. Thus it 
is rather surprising that the fractal of Figure 14, 
called the Sierpinski triangle, may also be obtained 
using a recursive process.

The triangle in Figure 14 is a binary Pascal’s 
triangle, where you use binary arithmetic (where   
0 + 0 = 0; 0 + 1 = 1 and, 1 + 1 = 0) to create the 
Pascal’s triangle. The recursion is as follows: Each 
row and column begins and ends with a 1. Every 
other number is found by the (binary) addition of 
numbers above it. The formula for the recursion is 

F (n + 1, k) = F (n, k – 1) + F ( n, k )

where F (n,k) is the term in the nth row and kth 
column, for n = 0, 1, 2, 3, ... and k = 0, 1, 2, 3, ... 
and the rules of binary arithmetic are used. In 
addition, we need the following values: 

F (n, 0) = 1 = F (n,n).

This recurrence relation is the recurrence for 
generating Pascal’s Triangle, satisfied by the 
Binomial coefficients.

Figure 14. The binary Pascal’s Triangle is also  
the Sierpinski Triangle

Of course, you can guess how to obtain the 
Sierpinski Triangle by iteration. Begin with a 
triangle, remove the middle triangle in step 1, 
which will leave behind three triangles to which 
you do the same! And just repeat this process 
forever.

The fact that Pascal’s triangle is symmetric upon 
reflection, led to the design below (Figure 15)—
made up of row over row of mirror-symmetric 
designs for the word “Pascal” increasing in size 
as we go down the rows. We call this design “a 
Pascals Triangle” (a triangle made up of many 
“Pascals”) as opposed to “the Pascal’s triangle” 
(the triangle of or belonging to Pascal). (Author’s 
note: This design was created under psignificant 
work pressure. Can you guess why?)
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In conclusion

Answer to the Puzzle in Figure 7: The “B” in “Benoit B Mandelbrot” 
stands for Benoit B Mandelbrot… and so on forever! Here is another 
way of representing the same idea, that we call, “Just let me B.” 
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Magic squares are a topic of interest to mathematicians, 
puzzlers and lay people alike. Apart from the mathematical 
properties, mystical qualities are often attributed to these in 

different cultures.

Magic squares are arrays of numbers (usually from 1 onwards) 
whose rows, columns and diagonals add up to the same ‘magic’ total. 
There is essentially just one 3 x 3 magic square with a magic sum of 
15, but one could have obtained others by reflections and rotations.

There are a large number of different 4 x 4 magic squares (even 
excluding reflections and rotations.) In several of these, apart from 
the rows, columns and diagonals yielding the magic sum of 34, many 
other symmetrically located quartets of numbers give the same total.

Some 4 x 4 magic squares have the property that pairs of numbers 
symmetrically placed about the centre of the grid add up to 17.  
Two such pairs of numbers would form an interesting pattern, 
yielding the magic sum of 34. Let us for short refer to this property  
as the ‘inversion symmetry’.

Math Exotica …

Keywords: Magic squares, pattern, symmetry, inversion, quadrilaterals
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Source: http://en.wikipedia.org/wiki/File:Melencolia_I_
(Durero).jpg

One such 4 x 4 magic square features in a 
celebrated work of art – an engraving titled 
Melancholia, executed by the German artist 
Albrecht Dürer in 1514. The square itself is shown 
below.

Observe that this has inversion symmetry. A 
straight line segment connecting the centres of a 
pair of squares thus related passes through the 
centre of symmetry and is bisected by it. With two 
such pairs of squares, therefore, we get two line 
segments that bisect each other. Hence the centres 
of the four squares in question form the corners 
of a parallelogram. To obtain such a parallelogram 
we must choose two squares out of the eight in 
one half of the 4 x 4 grid. The matching squares 
(their ‘mates’) get selected automatically. Now 

we have 28 ways of choosing 2 objects out of 8. 
One can identify these 28 parallelograms (with 
centres at the centre of the grid) and thereby 
obtain 28 quartets of numbers giving the magic 
total. Four of these shapes are actually squares, 
while four others are non-square rectangles, two 
are non-square rhombuses, sixteen are general 
parallelograms, and two are straight lines (the 
diagonals) which can be considered collapsed 
or ‘degenerate’ parallelograms. Some of these 
parallelograms are displayed below.

One such 4x4 magic square features in a celebrated work of art – an engraving titled Melancholia, 
executed by the German artist Albrecht Dürer in 1514. The square itself is shown below. 
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below. 
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The equality of row and column sums is not a consequence of the inversion symmetry. They are 
independently contrived by a judicious distribution of the numbers 1 to 8 in the grid. (The other 
numbers then get assigned automatically.) 

Each row and each column shares a symmetry axis with the entire grid. Eight other quartets 
giving the magic sum and sharing a symmetry axis with the entire grid are as follows: the four 
squares in each quadrant of the main grid and the corners of four 3x3 squares. 
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The equality of row and column sums is not a consequence of the inversion symmetry. They are 
independently contrived by a judicious distribution of the numbers 1 to 8 in the grid. (The other 
numbers then get assigned automatically.) 

Each row and each column shares a symmetry axis with the entire grid. Eight other quartets 
giving the magic sum and sharing a symmetry axis with the entire grid are as follows: the four 
squares in each quadrant of the main grid and the corners of four 3x3 squares. 
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The equality of row and column sums is not a 
consequence of the inversion symmetry. They 
are independently contrived by a judicious 
distribution of the numbers 1 to 8 in the grid. (The 
other numbers then get assigned automatically.) 

Each row and each column shares a symmetry 
axis with the entire grid. Eight other quartets 
giving the magic sum and sharing a symmetry 
axis with the entire grid are as follows: the four 
squares in each quadrant of the main grid and the 
corners of four 3 x 3 squares. 

There are sixteen other quartets giving the magic 
sum, and with at least one element of symmetry, 
but not placed symmetrically in the main grid. 
These are eight 2 x 3 rectangles, four ‘kites’ (2 
erect and 2 inverted) and four arrowheads (2 
erect and 2 inverted). The latter two patterns 
appear only in the vertical sense and have no 
horizontal counterparts.

There are 86 ways of obtaining a sum of 34 by 
choosing four numbers from 1-16. (It would be 
an interesting but challenging exercise for the 
student to verify this.) Durer’s magic square 
exhibits 60 of these in symmetrical patterns. (The 
student is invited to verify this as well.)

An Indian magic square
As a counterpoint to the magic square discussed 
above we look at a magic square of Indian origin.

It does not have the inversion property and so 
does not exhibit many properties that follow 

from it. However, apart from the row, column and 
diagonal property it has other interesting features.

Quartets of numbers forming the corners of eight 
isosceles trapeziums add to the magic sum. An 
example is given below.

It has the ‘pandiagonal’ property, that is, quartets 
formed from numbers on the broken diagonals 
give the magic sum. An example follows.

Every 2 x 2 square gives the magic sum, as does 
the set of corners of each 2 x 4 rectangle.

The magic square can be extended by repetition in 
both East-West and North-South directions to give 
a ‘Magic carpet’ – an open 2-D array of numbers, 
where any four neighbouring numbers in a line 
(vertical, horizontal or diagonal) or forming a 2 x 2 
square yield the magic sum. In addition, numbers 
at the corners of any 3 x 3 square and any 4 x 4 
square yield the magic sum. 

Further investigations in this area will surely 
prove to be a ‘magic carpet ride’ for a young 
mathematician or puzzle enthusiast.

A RAMACHANDRAN has had a long standing interest in the teaching of mathematics and science. He studied 
physical science and mathematics at the undergraduate level, and shifted to life science at the postgraduate level. 
He taught science, mathematics and geography to middle school students at Rishi Valley School for over two 
decades, and now stays in Chennai. His other interests include the English language and Indian music. He may be 
contacted at archandran.53@gmail.com.
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I
n my last entry on CCEǡ I had included a project as part of the formative assessmentǤ In order to allow for both individual and collaborative workǡ I had ambitiously planned to include a single project with both these componentsǤ It was now time to get real on my plansǤ In my search for suitable projects which encompassed a wide spectrum of arithmeticǡ geometric and algebraic components with a focus on mensurationǡ I naturally turned to tangramsǤ This topic is a favourite for both teachers and project designersǤ I wondered if I could get off the beaten path while taking advantage of the opportunities this material offeredǤ That was when a colleague showed me how to make a tangram from a single AͶ sheet using paper foldingǤ This is the project I designed based on her inputǤ My rationale for developing this project wasǣ ͳǤ My overarching goal of enabling students to move from ǲConcrete to AbstractǳǤ As students worked with paper cutting and then paper foldingǡ they were able to see the dimensions changeǤ For those comfortable with measuring the dimensions of their project at different stagesǡ discussion with class mates would allow them to generalize and use algebraic terms instead of arithmetic quantitiesǤ I would of course aid this process with class discussionsǤ
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ʹǤ Algebraic simpliϐication is never easy for students new to itǤ Very oftenǡ they simply donǯt see the point of itǤ Being able to calculate areas by algebraic simpliϐicationǡ and actually to verify the calculationsǡ would help students tremendouslyǤ͵Ǥ The properties of quadrilaterals are often merely memorizedǤ By asking students to create quadrilateralsǡ I hoped to make them understand and appreciate Ȃ by doingǡ not observingǤͶǤ Working with paper and then generalizing in ʹǦdimensions would help students improve their spatial abilitiesǤ  Since the class was new to paper foldingǡ I took time to explain the valley fold ȋinwardsȌ and the mountain fold ȋoutwardsȌǤ As a groupǡ we discussed the symmetries involved in foldingǤ I was aware that this was not an easy project and that asking students to do independent work would result in them seeking external helpǤ Throughoutǡ I encouraged students to work with discussionǡ and I also had periodic whole class discussion sessions so that students could share difϐicultiesǤ As each group had students working on identical individual projects they could always share notes and help each other alongǤ I also asked students to document their progressǡ explaining that this would give them more credit than the Ǯright answerǯǤ  

Group Componentǣ Each group of ͹ students was given a single AͶ sheet and asked to divide it into ʹ quartersǡ ͵ eighths and ʹ sixteenthsǡ as shown Figure ͳǤ Each student takes a pieceǤThe group was asked toȏiȐ Show the calculation for the sum of all the pieces being equal to ͳǤȏiiȐ Find the ratio of the dimensions of the length land the breadth b of the sheet of AͶ paperǤȏiiiȐ Discuss and arrange the following in ascending orderǣ 
Individual Component: Nextǡ each student in the group was given the following pieces with the accompanying instructionsȏiȐ Students 1 & 2: Make a triangle out of the oneǦ quarter AͶ sheetǤ ȋProcedureǣ Triangleǡ FigǤ ͵ȌȏiiȐ Student 3: Make a triangle out of the oneǦeighth AͶ sheetǤ ȋProcedureǣ Triangleǡ FigǤ ͵ȌȏiiiȐ Students 5 & 6: Make triangles out of the oneǦsixteenth AͶ sheetǤ ȋProcedureǣ Triangleǡ FigǤ ͵ȌȏivȐ Student 4: Make a square out of the oneǦeighth AͶ sheetǤ ȋProcedureǣ Squareǡ FigǤ ͶȏvȐ Student 7: Make a parallelogram out of the oneǦeighth AͶ sheetǤ ȋProcedureǣ Parallelogramǡ FigǤ ͷȌ

and the breadth of the sheet of AͶ 
ollowing in ascending order the followingǣ  鎮態, 長態 ┸ 鎮替, 長替, 鎮腿, 長腿.Nextǡ each student in the group was given the following pieces with the 

Figure 1.  Cut the A4 sheet along the 

dotted lines to 7 parts - 2 equal large, 

3 equal medium and 2 small equal rectangles 

Figure 2.
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General questions to be attempted by each student in the group after receiving his/

her piece of paper. [The answers are in the accompanying teacher notes.] 

1. If the original A4 sheet had length l and breadth b, what are the dimensions of the piece of paper 

assigned to you? Give your answer in terms of l and b and indicate which of them is smaller and which 

one is larger. 

2. What is the area of the piece of paper you got? 

3. What is the ratio of the area of your piece of paper to the area of the original A4 sheet? 

4. Instructions for folding most of the shapes require you to start by folding off a square. What are the 

dimensions of the largest possible square for your piece of paper in terms of l and b? 

5. Creating this square requires you to fold off a small rectangular extension – what are the dimensions of 

this rectangle in terms of l and b?  

Speciϐic questions to be attempted by the students making the triangleǢ the answers are 
in the accompanying teacher notes. 

1. Obtain the area of the square that you mark off in terms of l and b in two different ways. Show your 

calculations. 

2. Mountain folds are made along two creases in step 3. Why do these folds result in a triangle (surmounting 

a rectangle)? 

3. Once the extra paper is tucked in, what kind of triangle do you get? 

4. What are the angles of this triangle?

5. What are the lengths of the sides of the triangle? (Hint: You will need to use Pythagoras’ theorem for this) 

6. Find the area of the triangle in two different ways. 

Figure 3  

Procedure Triangle: 
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Procedure Square: 

Figure 4

Speciϐic questions to be attempted by the students making the squareǢ the answers are 
in the accompanying teacher notes. 

1. The three creases shown all pass through one point. What is this point? 

2. The procedure for making the square involves marking off two rectangles on either side of a central 

quadrilateral. What are the dimensions of these two rectangles? 

3. What angle does the valley fold in step 3 make with the vertical and the horizontal? 

4. How do these angles enable the valley fold to create the fourth and ϐifth steps of FigǤ Ͷǫ 
5. The valley fold marks off a quadrilateral with two rectangles on either side in steps 5-9 of Fig. 4. 

What are the sides of this quadrilateral? 

6. What type of quadrilateral is this? Give reasons for your answer. 

7. What is its area? 
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Speciϐic questions to be attempted by the students making the parallelogramǤ          
1. When the paper is folded into three, what are the dimensions of the larger rectangle that is obtained at 

the bottom (in step 3)? 

2. Obtain the area of this rectangle in terms of l and b in two different ways. Show your calculations. 

3. What is the ratio of the length to the breadth of this rectangle? 

4. How does folding the two triangles give a ϐigure whose opposite sides are equal and parallelǫ 
5. What are the different kinds of polygons that emerge during this folding? Sketch or photograph them. 

Figure 5

Procedure Parallelogram: 
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3. What is the ratio of the length to the breadth 

of this rectangle? 2:1

4. How does folding the two triangles give a ϐigure whose opposite sides are equal 
and parallel? The rectangle consists of two 

congruent squares (since the length is twice 

the breadth). The triangles are folded along 

the diagonals of these adjacent squares. The 

diagonals are equal in length and inclined at 

to the base of the rectangle.

5. What different kinds of polygons emerge 

during this folding? Sketch or photograph 

them. A heptagon, a pentagon, two adjacent 

squares and the parallelogram

Putting the pieces together

Once the individual projects were submitted 

and graded, the groups of 7 students can come 

together for more traditional tangram projects. 

Useful ideas for these may be obtained from 

[2], [3] and [4] and many more are available on 

the Internet. The groups work on these with 

the individual pieces created by them. The 

outcome does depend on each piece so at this 

point a shoddily constructed block will affect 

the whole. Students may choose to redo their 

individual projects at this stage. Of course, the 

planned descriptors for the rubric will again focus 

on process rather than product but the group 

will gain points for cooperative work and for 

demonstrating group responsibility and individual 

responsibility.
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In case you are wondering what is about to unfold, let me recap the 
theme of the conference: mathematics in/from anything and 
everything. What do we mean by anything and everything? Let 

me take this opportunity to focus on a mundane task that most people, 
women in particular, do almost every day - folding clothes. Let us see 
what mathematics is hiding within the folds and where folds can lead us, 
mathematically of course!  

Let me give you a few examples of how girls and women have an edge 
over the male of the species regarding mathematics! Let’s begin with a 
sari. 

Figure 1. 

Swati Sircar

Keywords: mathematization, folding, exponents

UN-FOLDING
“Mathematics in/from anything and everything” was 
the theme of the Association of Math Teachers of India 
(AMTI) conference at Kochi in January 2014. Swati Sircar, 
mathematics resource person at Azim Premji University 
delivered this talk in which she folded the cloth to match 
the math.
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The sari is a long piece of cloth which symbolizes 
female Indian attire. When you fold a sari, you 
need to be careful while holding the folds, else you 
will miss some edges! If you count the number of 
folded edges after each fold, you get the powers 
of 2, viz. 1, 2, 4, 8 (typically, no one folds a sari 
beyond that). Why? Well, folding is equivalent 
to folding in half, so after the first fold you get 1 
folded edge. This doubles at the second fold giving 
2 folds, which doubles at the third fold giving 4 
folds, and so on (see Figure 1). Table 1 displays 
the count of folded edges after each fold.

Table 1. 

You can generalize that n folds will generate 
edges 2n-1. This can be a good starter for teaching 
exponents. It is important to draw attention to 
what are we halving, and whether that is getting 
‘compensated’ elsewhere. Essentially with each 
fold we halve the length of the (folded) sari. The 
resulting length is compensated by the number 
of layers. This is important as we are not cutting 
and throwing away something but only folding, 
i.e., the whole is intact. So the resulting length and 
the number of layers always maintain a reciprocal 
relation.

Simple halving folds can be used to initiate the 
study of Geometric Progressions (GP) and the sum 
of a GP. Take 2 handkerchiefs of the same size but 
of different colour and place them one over the 
other. Fold the top one in half. Each ‘sheet’ now 
represents ½. Fold the top again in half. Now the 
top represents, 

while the bottom represents 

If you keep going, after the nth halving, the top 
represents 

and the bottom represents

One can see from this that 

This idea can be explored further to derive the 
formula for calculating sum of the first n terms of a 
GP. Note that you can also do the halving along the 
diagonals (Figure 2).  

Figure 2. 

The pedagogic possibilities in folding are not 
limited to concepts related to halving (and 
doubling). Here is another situation where girls 
and women score over boys (and men). If you 
wish to fold a bed sheet or a handkerchief, you 
can start with any edge. Here we are assuming 

Fold number 1 2 3 4 5 

Number of 
folded edges 1 2 4 8 16 

Thickness of 
each fold  1  1/2 1/4 1/8 1/16 
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that we want a “nice” way of folding where the 
edges match up at each fold. Now, take a skirt or 
a petticoat. Can you start folding along any edge? 
No. You must start at the top edge. Otherwise the 
side edges will not match up. Why? The reason lies 
in the shape. 

A bed sheet or handkerchief is rectangular. Hence 
both pairs of opposite sides are parallel to each 
other. But a skirt or a petticoat is like an isosceles 
trapezium (at best), and their vertical sides are 
not parallel to each other. When we fold a cloth 
(or paper), a particular edge gets folded in a way 
that the 2 parts of the edge match, the fold line 
is perpendicular to that edge, because we are 
halving the straight angle, i.e.,180° and getting 2 
right angles (90°) on either side of the fold. The 
fold line therefore is the angle bisector of the 
straight angle represented by the edge (Figure 3).  

Since opposite sides of a rectangle are parallel, 
any line perpendicular to one edge will be 
perpendicular to the opposite edge as well. So we 
can start with any edge and fold, and the opposite 
side will naturally match up. But if we fold either 
of the vertical sides of a skirt or a petticoat, the 
fold line perpendicular to that edge will not be 
perpendicular to the opposite edge, as the vertical 
edges are not parallel (Figure 4).  

However such a situation does arise with men’s 
attire too: bell-bottom pants, after the first fold 

brings the two trouser legs together. The eternal 
popularity of the sari ensures that women will 
always encounter such folds whereas men 
will have to wait for the vagaries of fashion to 
experience this aspect of mathematics!  

This simple folding technique can be used to test if 
two lines are parallel or not. Fold along both lines. 
Now fold a perpendicular to one line. Check if the 
two parts of the other line have coincided with 
each other. If they have, then the fold line is also 
perpendicular to the second line and therefore the 
two lines are parallel to each other (as both are 
perpendicular to the fold line). If not, the two lines 
are not parallel to each other (Figure 5).  

If we study a folded petticoat or skirt, more 
geometry unfolds. The first vertical fold halves the 
cloth and the 2 parts exactly match. That makes 
the fold line special. It is the line of symmetry of 
the skirt or petticoat. Given the isosceles trapezoid 
shape, there is just one such line. Naturally, we 
started with that line. Whenever you fold and cut, 
and then unfold to see the resulting pattern, you 
cannot but see line symmetry. This can be used 
with multiple folds to generate the following: 

(a) Rotational symmetry (by using folds passing 
through the same point), or : 

(b) Translation symmetry (by using folds parallel 
to each other). 

Figure 3. 

Figure 5. Figure 4.



45At Right Angles  | Vol. 3, No. 2, July 2014

Beautiful patterns can then be generated  
(Figure 6).  

This helps explain how double reflection on 
intersecting lines creates rotation, the intersection 
point being the center of rotation. The angle of 
rotation is double the acute angle generated by 
the intersecting lines (Figure 7).  

Similarly double reflection on parallel lines 
creates translation. The distance translated is 
double the distance between the parallel lines 
(Figure 8).  

So folds are closely linked to line symmetry 
and reflection and can be used to show 
many geometric properties of triangles and 
quadrilaterals, especially those involved with 
congruence.  

Just to give an example, suppose you want to 
compare the sides and angles in a triangle. There 
are 2 theorems related to these – side relations 
implying angles relations and their reverses – for 
scalene as well as for isosceles triangles. Let us 
take a closer look at them through the lens of 
paper folding:  

Figure 6. 

Figure 8. Figure 7. 
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Part A: angle relations implying side 
relations 

Paper Folding Theorem 

To compare any 2 sides of any triangle fold one on 
the other starting from the common vertex. The 
fold is actually the bisector of the angle between 
these 2 sides (Figure 9).  

As you can see from the right, the diagrams match 
what you get through folding. The construction in 
each case is exactly the corresponding fold line.  

Now let us look at two theorems:  

Theorem 1: In ΔABC, ∠C < ∠B ⇒ AB < AC  

Draw the angle bisector of ∠A that meets BC at D 
(Figure 10).  
∴ ∠DAB = ∠DAC = ½∠A 
∠ADC = ∠ABD + ∠BAD = ∠B + ½∠A >  
∠C + ½∠A = ∠ ACD + ∠DAC = ∠ADB  
∴ We can cut off an angle equal to ∠ADB from 
∠ADC. 
Let E be a point on AC such that ∠ADE = ∠ADB. 
Then ΔABD ≅ ΔAED, by ASA. 
∴ AB = AE < AC.  

Theorem 2: In ΔABC,  ∠B = ∠C ⇒ AB = AC  

Draw the angle bisector of ∠A that meets BC at D 
(Figure 11).  
∴ ∠DAB = ∠DAC = ½∠A 
∴ ΔABD ≅ ΔACD by AAS  
∴ AC = AB 

Part B: side relations implying angle 
relations  

Paper Folding 

Similarly to compare any 2 angles, one can halve 
their common side, i.e., fold the perpendicular 
bisector of their common side (Figure 12).  

Observe how the folded figure for scalene (or 
unequal angles) overlapped with the unfolded 
triangle generates the diagram on the right 
(Figure 13).  

Here the corresponding theorems are as follows:  

Figure 9. 

Figure 12. 



47At Right Angles  | Vol. 3, No. 2, July 2014

Theorem 3: In ΔABC, AB < AC ⇒ ∠C < ∠B  

Draw the perpendicular bisector of BC that meets 
AC at E*, while D is the midpoint of BC  
∴ CD = BD and ∠EDC = ∠EDB 
And since ED is common side, by SAS, ΔEDC ≅ 
ΔEDB 
∴ ∠C = ∠ECD = ∠EBD < ∠ABD = ∠B  
* For an explanation of why E is always between A 
and C see ** below 

For isosceles triangles, i.e., AB = AC ⇒ ∠C = ∠B, 
the fold is the perpendicular bisector of BC (which 
one can observe goes through A). The proof uses 
the perpendicular from A to BC. Therefore though 
the lines are all same, their meanings are a bit 
different.

**It always used to bother me why the 
perpendicular bisector of BC will intersect the 
larger side AC as opposed to the shorter one AB. 
On reflection the following turns out: Let AH ⊥ BC 
(Figure 14), ∴ by Pythagoras AC2 = AH2 + CH2 and 
AB2 = AH2 + BH2, AH is common, AB < AC ⇒ BH 
< CH ∴ the midpoint D of BC falls within CH ∴ the 
perpendicular bisector of BC cuts side AC and not 
side AB.

Note how this involves Pythagoras which comes 
much later in the syllabus. But the similar logic in 

“angle to side” i.e., ∠C < ∠B ⇒ AB < AC is simpler. 
However, textbooks usually include the proof of 
“side to angle” i.e., AB < AC ⇒ ∠C < ∠B without 
mentioning the above. Then “angle to side” is 
proved by contradiction.

The reader can explore which other properties of 
triangles and quadrilaterals (and angles) can be 
demonstrated through folding.

One figure stands out as an exception to the 
above, as we cannot use folding to check its 
properties. Any guesses? It’s the parallelogram. 
Why? Recall that folds correspond precisely to 
line symmetry. Incidentally, the parallelogram is 
the only quadrilateral that has rotational but not 
line symmetry. Every other quadrilateral with 
any kind of symmetry has a line of symmetry. 
The only property of the parallelogram that can 
be demonstrated with folds is that the diagonals 
bisect each other. I will leave it to the reader 
to figure out how to do so. You can refer to the 
annexure for the basic folds. Interestingly these 
basic folds have a 1-1 onto mapping with the basic 
constructions!

But before going more deeply into comparing 
folds with constructions (with compass and 
straight edge), let me get back to the original 
theme. This symmetry aspect of folding is 
crucially used in one profession whose benefits 
we all enjoy. Can you name this profession? It 
is tailoring. We human beings externally have 
bilateral symmetry on a gross scale. Naturally, our 
clothing imitates that. And the tailor smartly uses 
this symmetry by folding the cloth before drawing 
and cutting.

Let me wrap it up (or fold it) with a treat that 
folding enables but Euclidean straight-edge and 
compass construction does not: trisecting an 
angle. It is possible to trisect any angle by folding, 
but we know that we cannot do the same with 
a compass and straight edge. If you are curious 
about this, please refer to At Right Angles, Volume 
1, No. 2, “Axioms of Paper Folding” (page 16) by 
Shiv Gaur.

Figure 13. 
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Pentomino puzzles were invented (or discovered) in the early 
1900s by Henry Dudeney, an English inventor of puzzles 
(who is unfortunately not as well known as he should be). 

They then appeared sporadically in recreational mathematical 
magazines in the 1930s and 1940s. Interest in them was revived 
when Solomon Golomb wrote about them in the 1950s. They were 
popularized by Martin Gardener in his column MATHEMATICAL 
GAMES that appeared in the Scientific American as well as in his 
books on recreational mathematics. While they are a valuable 
educational resource in their avatar as puzzles, they can also be 
used effectively to build spatial intuition.

So what are pentominoes?
Take five identical squares. Now place them one at a time so that 
(apart from the first square) each square touches at least one of the 
squares already placed along a complete edge. The various shapes 
that can result are known as pentominoes ('penta' meaning five and 
'mino' to suggest that they are related to dominos).

PENTOMINOES
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It turns out that it is possible to make twelve such 
shapes using five squares. These twelve shapes 
make up a set of pentominoes. In order to talk 
about the various pieces, it helps to name them. 
They are usually denoted by alphabets as in  
Figure 1.

Pentominoes are often used in the same way that 
tangrams are. So, a pentomino puzzle is a shape 
drawn on a sheet of paper. Solving the puzzle 
requires one to place the 12 (or sometimes fewer) 
pentomino pieces on a plane surface to form 
a shape similar to the one given on the sheet. 
A Google search gives a large number of sites 
devoted to such puzzles; the more useful of these 
sites grades the puzzles in order of difficulty.

In this article, we are not as concerned with 
difficult pentomino constructions (which is a 
natural and worthwhile place to aim to go once 
we are familiar with these pieces), as with ways 
in which pentominoes can be used in a classroom 
with a group of students to develop geometric 

intuition. However we give some examples of 
these construction puzzles at the end of the article, 
including some references.

Finding pentominoes – an activity
A worthwhile question to investigate with a 
group of students is that of finding all possible 
pentominoes and we sketch here one way to do 
this. While this can be done with paper and pencil, 
it sometimes helps to have a number of squares 
cut out of card (or other suitable material).

One begins with the definition of pentominoes 
and what it can mean for two squares to touch 
correctly. We observe that there is only one 
monomino (the square). We see different ways to 
add a square to this monomino and see that all the 
possibilities end with the same result (a domino).

To move to trominoes, one sees the various ways 
to join a square onto a domino. While there are 
many ways of doing this, there are only two 
distinct ones (‘I’ and ‘L’; see Figure 2). This is 
a good time to use words such as ‘congruent’, 
‘rotate’ and ‘reflect’.

Now add a square to the two possible trominoes 
to get tetrominoes. At this stage, it may be noticed 
that some pairs of shapes are not identical if only 
translations and rotations are allowed, but can 
be superposed if reflection is permitted (that 
is, flipping over). We find that there are five 
tetrominoes; see Figure 3.

Figure 1: The twelve pentominoes

Figure 2: From domino to tromino
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Add another square to obtain pentominoes. 
Students will need to keep track of the different 
ways in which a square can be added and the 
various congruences which occur to find the full 
list of possible pentominoes. Using the symmetries 
of each tetromino also makes this enumeration 
more efficient.

Getting to know the pentominoes
There are a couple of ways to develop a sense of 
familiarity with the pieces.

•	 One way which works well with younger 
students is to give them a set of pentominoes 
and let them construct any figure they like 
(this strategy also works with other dissec-
tion puzzles like the tangram): figures of 
animals, houses, vehicles, etc. They could be 
given sheets of squared paper to copy out the 

silhouette of the figures they have built. They 
can also be asked to mark out the positions of 
the pieces on their drawings. Often this gives 
rise to arrangements that can later be used as 
puzzles for other children.

•	 While it is commonly thought that a pen-
tomino puzzle must be made using all the 
twelve pieces, this is not necessary. One could 
start off with puzzles using just two pieces 
and build from there. For examples of such 
puzzles, please look at the CIMT website from 
which the Space-filling problems in Figure 4 
have been taken.

While these are particularly suited to develop 
spatial abilities in children, they are also suitable 
to train children to think methodically and 
develop reasons for eliminating possible options.

Figure 3: The five tetrominoes

Figure 4: Pentomino puzzles from the CIMT website (http://www.cimt.plymouth.ac.uk/)
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A board game
While constructing shapes is usually the key 
feature while using pentominoes, there is at least 
one board game using the pentomino pieces, 
which can be played by two or three players.

Mark out an eight by eight grid (or use a chess 
board whose squares have the same size as the 
squares making up your set of pentominoes). The 
first player chooses a piece and places it on the 
board in such a way that it lies entirely on the 
board and follows the grid. The next player has to 
lay a piece in a similar manner, with the additional 
requirement that it does not lie over a previously 
placed piece. Players take turns laying pieces until 
one of them is no longer able to put down a piece. 
The last player who can lay down a piece is the 
winner.

The idea behind this game is related to that of 
pentomino exclusion, an idea that is explored in 
Chapter 3 of Golomb's book (referred to below).

Making pentominoes
While sets of pentominoes are commercially 
available, one would recommend making them by 
hand, especially with students. In this section we 
suggest a few ways in which a set of pentominoes 
can be made. Since much of what is involved in 
this activity can be used to make other puzzles and 
manipulatives, this opens up many opportunities. 
You could choose depending of the time, resources 
and material available.

•	 Graph paper and card – draw out the twelve 
pentominoes on graph paper so that each 
square has a side of 20mm or 25mm. It works 
better if the pieces are drawn out with no 
shapes touching. Stick the graph paper on a 
sheet of heavy KG card. Cut the shapes out 
using scissors. If this is being done by older 
students or teachers, use a blade and ruler to 
cut out the inside corners to get more precise 
cuts.

•	 Wood – most plywood shops sell wooden 
beading which is 3/4th inch or an inch thick. 
Choose pieces that are neatly cut. Using a tri-
square, mark out pieces of the sizes you need 
and cut them out using a saw with fine teeth 
(even a hacksaw will work). Don't cut them all 
into squares to be more efficient (for example, 
cut out the I piece as a single piece, five units 
long, the X as one piece three units long and 
two squares). Using a wood glue (Fevicol SH, 
for example) stick these together to get the 
shapes you need.

You need to keep in mind that wood sticks best 
‘along the grain’ while orienting your pieces. 
Also, getting precise cuts might take some 
practice and patience.

If one is able to find a workshop that cuts 
beading, it is worthwhile trying to get some 
lengths of wood that are square in cross-
section. Cutting these out into cubes allows 
one to make pentominoes suitable for three- 
dimensional puzzles as well as experiment 
with making other puzzles like the ‘soma cube’.

•	 Acrylic or other plastics – this is the most 
“high-tech” method. One can draw out the 
pentomino pieces using sketching software 
(such as Inkscape or SketchUp, both available 
on the net without a fee). The files can then 
be given to a laser cutter to be cut out on a 
variety of materials. Tracking down a laser 
cutter involves enquiring at shops that make 
rubber stamps or trophies. Often operators 
of these machines will also be able to sketch 
out the pieces on appropriate software for 
those reluctant to use Inkscape / SketchUp 
(though learning to use these software tools 
is a worthwhile skill to learn). The advantage 
of this method is that it is possible to make a 
number of sets fairly quickly, and access to 
a laser-cutting workshop could lead you to 
explore and make other dissection puzzles.
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Resources
The book “Polyominoes: Puzzles, Patterns, Problems, and Packings” (revised and expanded second edition) by Solomon 
Golomb (pub: Princeton University Press, 1994) has a number of excursions into the geometry of pentominoes. While not 
directly accessible to most school students, it is certainly possible for teachers to adapt some of the material in it for use 
with students.

The internet has a large number of sites devoted to pentominoes for students of all ages, and a particularly good one is the 
CIMT website http://www.cimt.plymouth.ac.uk/resources/puzzles/pentoes/pentoint.htm which has pentomino problems 
accessible to school children, many of which are inspired by Golomb's book mentioned above.

Appendix: Some pentomino puzzle sites
There are many good sites for such puzzles, for example:

•	 http://puzzler.sourceforge.net/docs/pentominoes.html

•	 http://isomerdesign.com/Pentomino/

•	 http://gp.home.xs4all.nl/PolyominoSolver/Polyomino.html

Here are some typical pentomino puzzles which we have taken from the site http://isomerdesign.com/Pentomino/.  
(In Figure 5, the regions shown shaded represent ‘holes’.)

EIGHT BY EIGHT SQUARES WITH ‘HOLES’ IN FOUR DESIGNATED SQUARES

TRIPLICATION: USING NINE PENTOMINOES TO CREATE THE FOLLOWING SHAPES

Figure 6: Using nine pentominoes to create a triplicate ‘L’ and a triplicate ‘N’

After completing his Ph.D at the Chennai Mathematical Institute, GAUTHAM DAYAL taught Mathematics (and 
some Physics) at the middle and high school levels both in the context of an international school as well as in 
learning centres for the urban poor. He is presently working at the Centre for Education Research Training and 
Development (CERTAD), Srishti School of Art, Design and Technology, Bangalore.
Gautham's interests are in the ways that Making and Play can be used as ways to learn math and physics. 
He has more recently been exploring the opportunities that technology provides in teaching/learning. In 
Gautham's words: ' I enjoy working with materials,particularly wood. While I do use this interest to make 
puzzles and toys, I find that I am not very good at solving these puzzles.' Gautham may be contacted at  
gautham.vanya@gmail.com 

Figure 5: Two pentomino puzzles requiring making a eight by eight shape
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in the classroom

A property of prime numbers

The following is a striking property of the primes: 

If p is a prime number exceeding 3, then p2 -1 is a multiple of 24. 

In general, statements about prime numbers are daunting to prove — 
in part because the primes are so highly irregular in their distribution. 
Indeed, we do not have any formula to generate the primes. So how 
might we go about proving the above statement? 

Let’s check it first. The primes exceeding 3 are: 5, 7, 11, 13, 17, 19, 23, 
. . . . Squaring them and subtracting 1, we get the numbers 24, 48, 120, 
168, 288, 360, 528, . . . . It is easily checked that each of these numbers 
is a multiple of 24. Indeed, their greatest common factor or GCD is 24. 
(Another term for GCD is HCF: ‘highest common factor’. But GCD is 
currently the accepted term in higher mathematics.) 

A strategy for proving the result. Here is an approach to finding a 
proof: Suppose that the claim is true. What does it lead to, what does it 
imply? By studying these implications, can we uncover a proof? Let’s do 
just this. An obvious implication of the given statement, which holds 
because 24 = 3 ×8, is the following: If p is a prime number exceeding 3, 
then p2 -1 is a multiple of both 3 and 8. 

Shailesh Shirali

How To Prove It
This continues the ‘Proof’ column begun earlier. In this ‘episode’ 
we study some problems concerning the prime numbers, and a 
theorem from triangle geometry.

Now an idea strikes us. If we show that a number
𝐾𝐾 is a multiple of both 3 and 8, would it follow
that 𝐾𝐾 is a multiple of 24? Yes. The reason for this
is seen by listing the multiples of 3 (namely: 3, 6,
9, 12, 15, 18, 21, 24, 27, 30, …) and the multiples
of 8 (namely: 8, 16, 24, 32, 40, …). On examining
these lists we �ind that the numbers common to
them are 24, 48, 72, …; they are all multiples of
the least number in the list, which is 24 (that‘s
precisely why 24 is called the ‘least common
multiple’ or ��� of 3 and 8).
So we have found a strategy for solving the
problem: Prove that if 𝑝𝑝 𝑝 𝑝 is prime, then 𝑝𝑝� − 1
is divisible by both 3 and by 8.
But this is easy!
Divisibility by 8 Since 𝑝𝑝 is a prime number
exceeding 3, it is odd. But we know from what we
proved in the last issue (How To Prove It,
November 2013) that if 𝑛𝑛 is odd, then 𝑛𝑛� − 1 is a
multiple of 8. Hence it must be true that if 𝑝𝑝 𝑝 𝑝 is
a prime number, 𝑝𝑝� − 1 is a multiple of 8.
(For those who missed the last issue, here is a
quick proof. Let 𝑛𝑛 be odd. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛 for
some integer 𝑘𝑘. This yields:
𝑛𝑛� − 1 = (2𝑘𝑘𝑘𝑘  𝑘� − 1 = 4𝑘𝑘� + 4𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘    𝑘.
Since 𝑘𝑘 and 𝑘𝑘𝑘𝑘   are a pair of consecutive
integers, one of them is even, hence 𝑘𝑘𝑘𝑘𝑘𝑘𝑘  𝑘 is
even; and this implies that 4𝑘𝑘𝑘𝑘𝑘𝑘𝑘  𝑘 is a multiple
of 8. Hence 𝑛𝑛� − 1 is a multiple of 8.)
Divisibility by 3 Since 𝑝𝑝 𝑝 𝑝 is prime, on division
by 3 it leaves a remainder of 1 or 2. So 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  
or 3𝑘𝑘𝑘𝑘   for some integer 𝑘𝑘. Now we need to
check the divisibility of 𝑝𝑝� − 1 by 3 for these two
forms.

• If 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝   , then
𝑝𝑝� − 1 = (3𝑘𝑘𝑘𝑘  𝑘� − 1 = 9𝑘𝑘� + 6𝑘𝑘, which is
a multiple of 3.

• If 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝   , then
𝑝𝑝� − 1 = (3𝑘𝑘𝑘𝑘  𝑘� − 1 = 9𝑘𝑘� + 12𝑘𝑘𝑘𝑘  ,
which too is a multiple of 3.

Either way, 𝑝𝑝� − 1 is a multiple of 3.
Since 𝑝𝑝� − 1 is a multiple of both 3 and 8, it
follows that 𝑝𝑝� − 1 is a multiple of 24.
Remark on the strategy followed You may
wonder why we selected the numbers 3 and 8.

Because 3 × 8 = 24? Not quite. Instead of 3 and 8,
what if we select 4 and 6? It is easy to show that if
𝑝𝑝 𝑝 𝑝 is prime, 𝑝𝑝� − 1 is a multiple of both 4 and
6. But since the ��� of 4 and 6 is 12, this would
only prove that 𝑝𝑝� − 1 is a multiple of 12. It would
not prove that 𝑝𝑝� − 1 is a multiple of 24.
Here are two more such results. In both we
consider the effect of division by 120.

1. If 𝑝𝑝 is a prime number exceeding 5, the
remainder when 𝑝𝑝� is divided by 120 is either
1 or 49.

2. If 𝑝𝑝 is a prime number exceeding 5, then
𝑝𝑝� − 1 is a multiple of 120.

For example, take the primes 17 and 19. We have:

17� = 289 = (120 × 2)+  49,
19� = 361 = (120 × 3)+  1,

and:

17� − 1 = 83520 = 120 × 696,
19� − 1 = 130320 = 120 × 1086.

We ask you to �ind the proofs of these statements.
Hint. 120 = 3 × 5 × 8. Hence you must consider
the effect of dividing 𝑝𝑝� by 3, 5 and 8 respectively.
Direct and Indirect Proof
Proofs do not all follow the same approach; they
come in different �lavours and different colours.
For example, proofs can be direct or indirect, and
this is a crucial distinction. We now elaborate on
this matter. Say we are given two ‘propositions’ or
assertions, 𝑃𝑃 and 𝑄𝑄, and we are required to show:
“If 𝑃𝑃 is true, then 𝑄𝑄 is true” (more brie�ly: “If 𝑃𝑃,
then 𝑄𝑄”, or “𝑃𝑃 𝑃 𝑃𝑃”). A “direct proof” is one
where we start with 𝑃𝑃 and travel ‘directly’ to 𝑄𝑄,
along a linear chain of deductions. In an ‘indirect
proof’ the starting point may not be 𝑃𝑃. Instead we
may ask: Could it be that 𝑄𝑄 is not true? What
might be the consequences of assuming that 𝑄𝑄 is
not true? What would it tell us about 𝑃𝑃? Thus we
consider various alternatives to 𝑄𝑄 and then
eliminate them, one by one, forcing us to ‘accept’𝑄𝑄.
Direct proof We give two examples of direct
proof. Note how they start with the given premise
and proceed in a linear way to the desired
conclusion.

3
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Shailesh Shirali

Now an idea strikes us. If we show that a number
𝐾𝐾 is a multiple of both 3 and 8, would it follow
that 𝐾𝐾 is a multiple of 24? Yes. The reason for this
is seen by listing the multiples of 3 (namely: 3, 6,
9, 12, 15, 18, 21, 24, 27, 30, …) and the multiples
of 8 (namely: 8, 16, 24, 32, 40, …). On examining
these lists we �ind that the numbers common to
them are 24, 48, 72, …; they are all multiples of
the least number in the list, which is 24 (that‘s
precisely why 24 is called the ‘least common
multiple’ or ��� of 3 and 8).
So we have found a strategy for solving the
problem: Prove that if 𝑝𝑝 𝑝 𝑝 is prime, then 𝑝𝑝� − 1
is divisible by both 3 and by 8.
But this is easy!
Divisibility by 8 Since 𝑝𝑝 is a prime number
exceeding 3, it is odd. But we know from what we
proved in the last issue (How To Prove It,
November 2013) that if 𝑛𝑛 is odd, then 𝑛𝑛� − 1 is a
multiple of 8. Hence it must be true that if 𝑝𝑝 𝑝 𝑝 is
a prime number, 𝑝𝑝� − 1 is a multiple of 8.
(For those who missed the last issue, here is a
quick proof. Let 𝑛𝑛 be odd. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛 for
some integer 𝑘𝑘. This yields:
𝑛𝑛� − 1 = (2𝑘𝑘𝑘𝑘  𝑘� − 1 = 4𝑘𝑘� + 4𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘    𝑘.
Since 𝑘𝑘 and 𝑘𝑘𝑘𝑘   are a pair of consecutive
integers, one of them is even, hence 𝑘𝑘𝑘𝑘𝑘𝑘𝑘  𝑘 is
even; and this implies that 4𝑘𝑘𝑘𝑘𝑘𝑘𝑘  𝑘 is a multiple
of 8. Hence 𝑛𝑛� − 1 is a multiple of 8.)
Divisibility by 3 Since 𝑝𝑝 𝑝 𝑝 is prime, on division
by 3 it leaves a remainder of 1 or 2. So 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  
or 3𝑘𝑘𝑘𝑘   for some integer 𝑘𝑘. Now we need to
check the divisibility of 𝑝𝑝� − 1 by 3 for these two
forms.

• If 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝   , then
𝑝𝑝� − 1 = (3𝑘𝑘𝑘𝑘  𝑘� − 1 = 9𝑘𝑘� + 6𝑘𝑘, which is
a multiple of 3.

• If 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝   , then
𝑝𝑝� − 1 = (3𝑘𝑘𝑘𝑘  𝑘� − 1 = 9𝑘𝑘� + 12𝑘𝑘𝑘𝑘  ,
which too is a multiple of 3.

Either way, 𝑝𝑝� − 1 is a multiple of 3.
Since 𝑝𝑝� − 1 is a multiple of both 3 and 8, it
follows that 𝑝𝑝� − 1 is a multiple of 24.
Remark on the strategy followed You may
wonder why we selected the numbers 3 and 8.

Because 3 × 8 = 24? Not quite. Instead of 3 and 8,
what if we select 4 and 6? It is easy to show that if
𝑝𝑝 𝑝 𝑝 is prime, 𝑝𝑝� − 1 is a multiple of both 4 and
6. But since the ��� of 4 and 6 is 12, this would
only prove that 𝑝𝑝� − 1 is a multiple of 12. It would
not prove that 𝑝𝑝� − 1 is a multiple of 24.
Here are two more such results. In both we
consider the effect of division by 120.

1. If 𝑝𝑝 is a prime number exceeding 5, the
remainder when 𝑝𝑝� is divided by 120 is either
1 or 49.

2. If 𝑝𝑝 is a prime number exceeding 5, then
𝑝𝑝� − 1 is a multiple of 120.

For example, take the primes 17 and 19. We have:

17� = 289 = (120 × 2)+  49,
19� = 361 = (120 × 3)+  1,

and:

17� − 1 = 83520 = 120 × 696,
19� − 1 = 130320 = 120 × 1086.

We ask you to �ind the proofs of these statements.
Hint. 120 = 3 × 5 × 8. Hence you must consider
the effect of dividing 𝑝𝑝� by 3, 5 and 8 respectively.
Direct and Indirect Proof
Proofs do not all follow the same approach; they
come in different �lavours and different colours.
For example, proofs can be direct or indirect, and
this is a crucial distinction. We now elaborate on
this matter. Say we are given two ‘propositions’ or
assertions, 𝑃𝑃 and 𝑄𝑄, and we are required to show:
“If 𝑃𝑃 is true, then 𝑄𝑄 is true” (more brie�ly: “If 𝑃𝑃,
then 𝑄𝑄”, or “𝑃𝑃 𝑃 𝑃𝑃”). A “direct proof” is one
where we start with 𝑃𝑃 and travel ‘directly’ to 𝑄𝑄,
along a linear chain of deductions. In an ‘indirect
proof’ the starting point may not be 𝑃𝑃. Instead we
may ask: Could it be that 𝑄𝑄 is not true? What
might be the consequences of assuming that 𝑄𝑄 is
not true? What would it tell us about 𝑃𝑃? Thus we
consider various alternatives to 𝑄𝑄 and then
eliminate them, one by one, forcing us to ‘accept’𝑄𝑄.
Direct proof We give two examples of direct
proof. Note how they start with the given premise
and proceed in a linear way to the desired
conclusion.
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Example 1. Prove: “For any integer 𝑛𝑛, the
remainder in the division 𝑛𝑛� ÷ 4 is 0 or 1.”
Proof: Suppose that 𝑛𝑛 is even. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 where
𝑘𝑘 is some integer. This implies that 𝑛𝑛� = 4𝑘𝑘�, so
𝑛𝑛� is a multiple of 4.
Next, suppose that 𝑛𝑛 is odd. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛
where 𝑘𝑘 is some integer. This implies that
𝑛𝑛� = 4𝑘𝑘� + 4𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘    𝑘𝑘𝑘𝑘𝑘  𝑘 𝑘𝑘 , and we see
that 𝑛𝑛� is 1more than a multiple of 4 and hence
leaves a remainder of 1 under division by 4.
Example 2. Prove: “If 𝑛𝑛 is a positive integer such
that the number 𝑥𝑥 𝑥𝑥𝑥 � − 1 is prime, then the
number �

�𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥  is perfect.” (A ‘perfect number’
is one for which the sum of the proper divisors
equals the number itself. Example: 6 is perfect,
since 1 +2+   3 = 6. In the rule stated, if we take
𝑛𝑛 𝑛 𝑛, we get 𝑥𝑥 𝑥 𝑥, which is prime, and this gives
us the perfect number �

�(7 × 8)=2  8. This
general rule was �irst mentioned by Euclid in The
Elements.)
Proof: We must show that �

�𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥   ��� ⋅ 𝑥𝑥 is
perfect. The number has two distinct prime
divisors (2 and 𝑥𝑥). This fact enables us to
enumerate its full list of divisors:

� 1, 2, 2�, 2�, … , 2���,
𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 � ⋅ 𝑥𝑥𝑥𝑥 � ⋅ 𝑥𝑥𝑥𝑥𝑥𝑥   ��� ⋅ 𝑥𝑥𝑥

Of these, all are proper factors except the very last
one, 2��� ⋅ 𝑥𝑥, which is the number itself. We must
now �ind the sum of all the proper factors. For this
we use an often-used identity: The s�m of the �irst
several powers of 2, starting with 1, is 1 less than
the next higher power of 2. Thus, 1 +2=2   � − 1,
1 +2+2   � =2 � − 1, 1 +2+2   � +2 � =2 � − 1,
and so on. �sing the identity we �ind the sum of
the proper factors of 2��� ⋅ 𝑥𝑥:

(� � � � �� � � � ����) � (� � � � �� � � � ����) �

� (�� � �) � (���� � �) � � � � (���� � �) �

� ���� ⋅ �𝑥

So the sum of the proper factors of 2��� ⋅ 𝑥𝑥 equals
the original number, 2��� ⋅ 𝑥𝑥, just as we wished to
prove.
Indirect proof Direct proof may seem the most
natural kind of proof. But there are situations
where a direct proof does not seem possible, or is
too dif�icult. In such cases, it may be simpler to
look for an indirect proof. Here, the signi�icance of
the word ‘indirect’ is that the proof proceeds by

elimination of the alternatives other than the one
we wish to prove. Occasionally we come across
situations where the indirect route is more
natural than the direct one; it may even be
aesthetically more pleasing. A few examples will
serve to illustrate these comments.
Example 3. Prove: “If 𝑛𝑛 𝑛 𝑛 is an integer such that
2� − 1 is prime, then 𝑛𝑛 is prime.”
Proof: How do we show that a number (known to
exceed 1) is prime? Here are two ways: either we
show that it has no proper divisors; or we show
that it cannot be composite. The latter is the
indirect way, and it is what we adopt here.
2mm]We have been told that 2� − 1 is prime.
Since 𝑛𝑛 is either prime or composite, there are
two possible situations which can occur:
(A) 2� − 1 is prime and 𝑛𝑛 is prime.
(B)2� − 1 is prime and 𝑛𝑛 is composite.
These two possibilities are contrary to each other
(they cannot both occur). Also, there are no
possibilities other than these. (So (A) and (B)
form a mutually exclusive list.) We wish to show
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Suppose that 𝑛𝑛 𝑛 𝑛 is composite; then 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 for
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2� − 1 =2 �� − 1. Let 𝑘𝑘𝑘𝑘  � . Then:

2� − 1 =(2 �)� − 1 =𝑘𝑘 � − 1. (1)
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𝑘𝑘�−1 𝑛 𝑘𝑛𝑛−1𝑘 �𝑛𝑛��� +𝑘𝑘 ��� +𝑘𝑘 ��� 𝑛 � 𝑛 𝑛𝑛 𝑛 1� 𝑥
(2)
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𝑘𝑘� − 1 =(𝑘𝑘𝑘𝑘   𝑘𝑘𝑘𝑘𝑘𝑘  𝑘,
𝑘𝑘� − 1 𝑛 𝑘𝑛𝑛 − 1𝑘 �𝑛𝑛� 𝑛 𝑛𝑛 𝑛 1�, etc.)
Both factors in the factorization (2) exceed 1; for,
the smaller of the two factors is 𝑘𝑘𝑘𝑘  , and
𝑘𝑘𝑘𝑘𝑘𝑘    � − 1which exceeds 1 since 𝑎𝑎 exceeds 1.
Hence 𝑘𝑘� − 1 is not prime, i.e., 2� − 1 is not prime.
Note what has happened: by supposing that 𝑛𝑛 is
composite, it has turned out that 2� − 1 is
composite as well. But this means that possibility
(B) has been falsi�ied; it cannot occur. Hence it is
possibility (A) which must occur. Therefore, if
2� − 1 is prime, it must be that 𝑛𝑛 itself is prime.
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Example 5. Prove: “If a triangle has two equal
angles, then the sides opposite to the equal angles
are equal.” Stated otherwise: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
∠𝐵𝐵 𝐵 𝐵𝐵𝐵, then 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴.”
Proof: First, some background. This problem is
Theorem I.6 in The Elements; it comes just after
I.5: “In an isosceles triangle, the angles opposite
the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, then ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐵𝐵𝐵𝐵
(possibilities: foot of internal bisector of angle
𝐵𝐵𝐵𝐵𝐵𝐵; midpoint of 𝐵𝐵𝐵𝐵; foot of perpendicular from
𝐴𝐴 to 𝐵𝐵𝐵𝐵), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐴𝐴 to bisect ∠𝐵𝐵𝐵𝐵𝐵𝐵. Now
compare △𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 is a shared
side, and ∠𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵. Hence △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
and ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Now compare △𝐷𝐷𝐷𝐷𝐷𝐷
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  , 𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵, and
∠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Hence △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we can show that both
these are not possible (or “absurd” to use Euclid's
words), then the desired conclusion would follow
(𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴). To carry out this aim, Euclid assumes
that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, argues as in Figure 2, and arrives at
the conclusion that △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd, since △𝐷𝐷𝐷𝐷𝐷𝐷 is contained within △𝐴𝐴𝐴𝐴𝐴𝐴,
and the part cannot be equal to the whole. The
absurd conclusion came about because of what
we had assumed: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we had assumed
instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when
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angles, then the sides opposite to the equal angles
are equal.” Stated otherwise: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
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If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐵𝐵𝐵𝐵
(possibilities: foot of internal bisector of angle
𝐵𝐵𝐵𝐵𝐵𝐵; midpoint of 𝐵𝐵𝐵𝐵; foot of perpendicular from
𝐴𝐴 to 𝐵𝐵𝐵𝐵), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐴𝐴 to bisect ∠𝐵𝐵𝐵𝐵𝐵𝐵. Now
compare △𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 is a shared
side, and ∠𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵. Hence △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
and ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Now compare △𝐷𝐷𝐷𝐷𝐷𝐷
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  , 𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵, and
∠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Hence △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
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Example 5. Prove: “If a triangle has two equal
angles, then the sides opposite to the equal angles
are equal.” Stated otherwise: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
∠𝐵𝐵 𝐵 𝐵𝐵𝐵, then 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴.”
Proof: First, some background. This problem is
Theorem I.6 in The Elements; it comes just after
I.5: “In an isosceles triangle, the angles opposite
the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, then ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐵𝐵𝐵𝐵
(possibilities: foot of internal bisector of angle
𝐵𝐵𝐵𝐵𝐵𝐵; midpoint of 𝐵𝐵𝐵𝐵; foot of perpendicular from
𝐴𝐴 to 𝐵𝐵𝐵𝐵), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐴𝐴 to bisect ∠𝐵𝐵𝐵𝐵𝐵𝐵. Now
compare △𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 is a shared
side, and ∠𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵. Hence △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
and ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Now compare △𝐷𝐷𝐷𝐷𝐷𝐷
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  , 𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵, and
∠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Hence △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
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words), then the desired conclusion would follow
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made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
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Closing remark. When you see indirect proof for
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the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
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the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, then ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐵𝐵𝐵𝐵
(possibilities: foot of internal bisector of angle
𝐵𝐵𝐵𝐵𝐵𝐵; midpoint of 𝐵𝐵𝐵𝐵; foot of perpendicular from
𝐴𝐴 to 𝐵𝐵𝐵𝐵), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐴𝐴 to bisect ∠𝐵𝐵𝐵𝐵𝐵𝐵. Now
compare △𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 is a shared
side, and ∠𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵. Hence △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
and ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Now compare △𝐷𝐷𝐷𝐷𝐷𝐷
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  , 𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵, and
∠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Hence △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we can show that both
these are not possible (or “absurd” to use Euclid's
words), then the desired conclusion would follow
(𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴). To carry out this aim, Euclid assumes
that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, argues as in Figure 2, and arrives at
the conclusion that △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd, since △𝐷𝐷𝐷𝐷𝐷𝐷 is contained within △𝐴𝐴𝐴𝐴𝐴𝐴,
and the part cannot be equal to the whole. The
absurd conclusion came about because of what
we had assumed: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we had assumed
instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when
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just what we wanted to show. �

FIGURE 1. Theorem I.5: In ∆ ABC,  
if AB= AC, then ∠B =∠C 

PROOF 7

A

B CD

××
Given: AB = AC. Draw AD to bisect

∠BAC. Now compare △ABD and

△ACD.

SAS congruence applies: AB = AC, AD
is a shared side, and ∠BAD =∠CAD.

Hence△ABD ≅△ACD, and ∠B =∠C.

FIGURE 1. Theorem I.5: In △ABC, if AB = AC, then ∠B =∠C

A

B C

D

Given: ∠ABC =∠ACB. Suppose

AB > AC. Locate D on AB such that

DB = AC. Now compare △DBC and

△ACB.

SAS congruence applies: DB = AC,

BC =CB, and ∠DBC =∠ACB. Hence

△DBC ≅△ACB. But this is absurd!

FIGURE 2. Theorem I.6: In △ABC, if∠B =∠C, then AB = AC

So Euclid uses a different strategy, and it is very ingenious. He asks, “Suppose that
what is to be proved is not true (i.e., the sides are not equal). What happens then?” Now
the possibility that AB ≠ AC can be subdivided into two possibilities: AB > AC, AC > AB.
If we can show that both these are not possible (or “absurd” to use Euclid’s words), then
the desired conclusion would follow (AB =AC). To carry out this aim, Euclid assumes that
AB > AC, argues as in Figure 2, and arrives at the conclusion that △DBC ≅ △ACB. But
this is absurd, since△DBC is contained within△ACB, and the part cannot be equal to the
whole. The absurd conclusion came about because of what we had assumed: AB > AC.
If we had assumed instead that AC > AB, a similar absurdity would follow. So neither of
these assumptions can be made. But then the only possibility left is AB = AC. And this is
just what we wanted to show. �

FIGURE 2. Theorem I.6: In ∆ ABC,  
if ∠B = ∠C, then AB =∠AC

Example 1. Prove: “For any integer 𝑛𝑛, the
remainder in the division 𝑛𝑛� ÷ 4 is 0 or 1.”
Proof: Suppose that 𝑛𝑛 is even. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 where
𝑘𝑘 is some integer. This implies that 𝑛𝑛� = 4𝑘𝑘�, so
𝑛𝑛� is a multiple of 4.
Next, suppose that 𝑛𝑛 is odd. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛
where 𝑘𝑘 is some integer. This implies that
𝑛𝑛� = 4𝑘𝑘� + 4𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘    𝑘𝑘𝑘𝑘𝑘  𝑘 𝑘𝑘 , and we see
that 𝑛𝑛� is 1more than a multiple of 4 and hence
leaves a remainder of 1 under division by 4.
Example 2. Prove: “If 𝑛𝑛 is a positive integer such
that the number 𝑥𝑥 𝑥𝑥𝑥 � − 1 is prime, then the
number �

�𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥  is perfect.” (A ‘perfect number’
is one for which the sum of the proper divisors
equals the number itself. Example: 6 is perfect,
since 1 +2+   3 = 6. In the rule stated, if we take
𝑛𝑛 𝑛 𝑛, we get 𝑥𝑥 𝑥 𝑥, which is prime, and this gives
us the perfect number �

�(7 × 8)=2  8. This
general rule was �irst mentioned by Euclid in The
Elements.)
Proof: We must show that �

�𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥   ��� ⋅ 𝑥𝑥 is
perfect. The number has two distinct prime
divisors (2 and 𝑥𝑥). This fact enables us to
enumerate its full list of divisors:

� 1, 2, 2�, 2�, … , 2���,
𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 � ⋅ 𝑥𝑥𝑥𝑥 � ⋅ 𝑥𝑥𝑥𝑥𝑥𝑥   ��� ⋅ 𝑥𝑥𝑥

Of these, all are proper factors except the very last
one, 2��� ⋅ 𝑥𝑥, which is the number itself. We must
now �ind the sum of all the proper factors. For this
we use an often-used identity: The s�m of the �irst
several powers of 2, starting with 1, is 1 less than
the next higher power of 2. Thus, 1 +2=2   � − 1,
1 +2+2   � =2 � − 1, 1 +2+2   � +2 � =2 � − 1,
and so on. �sing the identity we �ind the sum of
the proper factors of 2��� ⋅ 𝑥𝑥:

(� � � � �� � � � ����) � (� � � � �� � � � ����) �

� (�� � �) � (���� � �) � � � � (���� � �) �

� ���� ⋅ �𝑥

So the sum of the proper factors of 2��� ⋅ 𝑥𝑥 equals
the original number, 2��� ⋅ 𝑥𝑥, just as we wished to
prove.
Indirect proof Direct proof may seem the most
natural kind of proof. But there are situations
where a direct proof does not seem possible, or is
too dif�icult. In such cases, it may be simpler to
look for an indirect proof. Here, the signi�icance of
the word ‘indirect’ is that the proof proceeds by

elimination of the alternatives other than the one
we wish to prove. Occasionally we come across
situations where the indirect route is more
natural than the direct one; it may even be
aesthetically more pleasing. A few examples will
serve to illustrate these comments.
Example 3. Prove: “If 𝑛𝑛 𝑛 𝑛 is an integer such that
2� − 1 is prime, then 𝑛𝑛 is prime.”
Proof: How do we show that a number (known to
exceed 1) is prime? Here are two ways: either we
show that it has no proper divisors; or we show
that it cannot be composite. The latter is the
indirect way, and it is what we adopt here.
2mm]We have been told that 2� − 1 is prime.
Since 𝑛𝑛 is either prime or composite, there are
two possible situations which can occur:
(A) 2� − 1 is prime and 𝑛𝑛 is prime.
(B)2� − 1 is prime and 𝑛𝑛 is composite.
These two possibilities are contrary to each other
(they cannot both occur). Also, there are no
possibilities other than these. (So (A) and (B)
form a mutually exclusive list.) We wish to show
that it is (A) that occurs, and an obvious strategy
for doing so is to show that (B) cannot occur. This
is what we now do.
Suppose that 𝑛𝑛 𝑛 𝑛 is composite; then 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 for
some two integers 𝑎𝑎𝑎𝑎   and 𝑏𝑏𝑏𝑏  , and
2� − 1 =2 �� − 1. Let 𝑘𝑘𝑘𝑘  � . Then:

2� − 1 =(2 �)� − 1 =𝑘𝑘 � − 1. (1)

The number 𝑘𝑘� − 1 has a factorization which is
easy to anticipate:

𝑘𝑘�−1 𝑛 𝑘𝑛𝑛−1𝑘 �𝑛𝑛��� +𝑘𝑘 ��� +𝑘𝑘 ��� 𝑛 � 𝑛 𝑛𝑛 𝑛 1� 𝑥
(2)

(This comes from observing that
𝑘𝑘� − 1 =(𝑘𝑘𝑘𝑘   𝑘𝑘𝑘𝑘𝑘𝑘  𝑘,
𝑘𝑘� − 1 𝑛 𝑘𝑛𝑛 − 1𝑘 �𝑛𝑛� 𝑛 𝑛𝑛 𝑛 1�, etc.)
Both factors in the factorization (2) exceed 1; for,
the smaller of the two factors is 𝑘𝑘𝑘𝑘  , and
𝑘𝑘𝑘𝑘𝑘𝑘    � − 1which exceeds 1 since 𝑎𝑎 exceeds 1.
Hence 𝑘𝑘� − 1 is not prime, i.e., 2� − 1 is not prime.
Note what has happened: by supposing that 𝑛𝑛 is
composite, it has turned out that 2� − 1 is
composite as well. But this means that possibility
(B) has been falsi�ied; it cannot occur. Hence it is
possibility (A) which must occur. Therefore, if
2� − 1 is prime, it must be that 𝑛𝑛 itself is prime.
Do you see why this proof is called ‘indirect’?
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Example 5. Prove: “If a triangle has two equal
angles, then the sides opposite to the equal angles
are equal.” Stated otherwise: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
∠𝐵𝐵 𝐵 𝐵𝐵𝐵, then 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴.”
Proof: First, some background. This problem is
Theorem I.6 in The Elements; it comes just after
I.5: “In an isosceles triangle, the angles opposite
the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, then ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐵𝐵𝐵𝐵
(possibilities: foot of internal bisector of angle
𝐵𝐵𝐵𝐵𝐵𝐵; midpoint of 𝐵𝐵𝐵𝐵; foot of perpendicular from
𝐴𝐴 to 𝐵𝐵𝐵𝐵), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐴𝐴 to bisect ∠𝐵𝐵𝐵𝐵𝐵𝐵. Now
compare △𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 is a shared
side, and ∠𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵. Hence △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
and ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Now compare △𝐷𝐷𝐷𝐷𝐷𝐷
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  , 𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵, and
∠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Hence △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we can show that both
these are not possible (or “absurd” to use Euclid's
words), then the desired conclusion would follow
(𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴). To carry out this aim, Euclid assumes
that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, argues as in Figure 2, and arrives at
the conclusion that △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd, since △𝐷𝐷𝐷𝐷𝐷𝐷 is contained within △𝐴𝐴𝐴𝐴𝐴𝐴,
and the part cannot be equal to the whole. The
absurd conclusion came about because of what
we had assumed: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we had assumed
instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when
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∠𝐵𝐵 𝐵 𝐵𝐵𝐵, then 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴.”
Proof: First, some background. This problem is
Theorem I.6 in The Elements; it comes just after
I.5: “In an isosceles triangle, the angles opposite
the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, then ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐵𝐵𝐵𝐵
(possibilities: foot of internal bisector of angle
𝐵𝐵𝐵𝐵𝐵𝐵; midpoint of 𝐵𝐵𝐵𝐵; foot of perpendicular from
𝐴𝐴 to 𝐵𝐵𝐵𝐵), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐴𝐴 to bisect ∠𝐵𝐵𝐵𝐵𝐵𝐵. Now
compare △𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 is a shared
side, and ∠𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵. Hence △𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
and ∠𝐵𝐵 𝐵 𝐵𝐵𝐵.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Now compare △𝐷𝐷𝐷𝐷𝐷𝐷
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  , 𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵, and
∠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Hence △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we can show that both
these are not possible (or “absurd” to use Euclid's
words), then the desired conclusion would follow
(𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴). To carry out this aim, Euclid assumes
that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, argues as in Figure 2, and arrives at
the conclusion that △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . But this is
absurd, since △𝐷𝐷𝐷𝐷𝐷𝐷 is contained within △𝐴𝐴𝐴𝐴𝐴𝐴,
and the part cannot be equal to the whole. The
absurd conclusion came about because of what
we had assumed: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we had assumed
instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when

5
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he produces an alibi: he can show that at 11 pm
that night he was in some other city. The police
case that X is the culprit now crumbles, as follows.
Claim. X is not guilty. Proof. Suppose not; i.e.,
suppose that X committed the crime. But then he
must have been at the scene of the crime at 11 pm.
On the other hand, he was in some other city at
exactly that time; that‘s what his alibi is all about!
So we reach a contradictory state of affairs. (We
assume that X does not belong to the league of ‘X

Men’and has not yet mastered the art of being in
two places at the same time.) Consequently we
must give up the assumption made at the
beginning, about X being guilty. Hence, Mr. X is
not guilty!
Note the laborious way in which we wrote out the
argument. In actuality, such reasoning happens in
a �lash, and we are not even aware that we have
thought it out in this way.

6

A date-of-birth computation

Example

Say you were born on day d of month m in year y. Here d is a number between 1 and 31, m is a number 
between 1 and 12, and y is a number between 0 and 99 (inclusive in each case).

For example, if the date of birth is 15 August 1947, then d = 15, m = 8, y = 47. We now do some 
arithmetical operations on d, m, y as described below.

1.	 Write down d.
2.	 Multiply by 4. Add 13. Multiply by 25.
3.	 Subtract 200. Add m.
4.	 Multiply by 2. Subtract 40. Multiply by 50.
5.	 Add y.
6.	 Subtract 10,500.

The result should be a number giving your birth day, month and last two digits of the year in which you 
were born.

Suppose your birthdate happens to be 15 August 1947, or 15-08-47. Here is how the computations go, 
starting with d = 15:

•	 15 → 15 x 4 = 60 → 60 + 13 = 73 → 73 x 25 = 1825

•	 1825 → 1825 – 200 = 1625 → 1625 + 08 = 1633

•	 1633 → 1633 x 2 = 3266 → 3266 – 40 = 3226 → 3226 x 50 = 161300

•	 161300 → 161300 + 47 = 161347 → 161347 – 10500 = 150847

The number obtained at the end is 150847, or 15-08-47.

Why does this work? Find an explanation!
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This short note is based on a note written by K. R. S. Sastry 
(see [1]) in which he puts into practice the constructive 
pedagogy of George Pólya: “First guess, then prove”.

The context used is that of finding a formula for the sum Sn of the 
first n terms of the arithmetic progression (‘AP’) with first term a 
and common difference d:

a,  a+d,  a+2d,  a+3d,  a+4d, . . . .

The textbooks typically give the following formula,

and prove it using Gauss’s technique of reversing the terms. As a 
result, students are rarely if ever presented with the challenge of 
finding a formula (which is clearly not the same as being given the 
formula and then being asked to prove it).

GUESSING THE FORMULA FOR “SUM OF AN ARITHMETIC
PROGRESSION”

C�MαC

This short note is based on a note written by K. R. S. Sastry (see [1]) in which he puts
into practice the constructive pedagogy of George Pólya: “First guess, then prove”.

The context used is that of finding a formula for the sum Sn of the first n terms of the
arithmetic progression (‘AP’) with first term a and common difference d:

a, a+d, a+2d, a+3d, a+4d, . . . .

The textbooks typically give the following formula,

Sn =
n�2a+(n−1)d�

2
,

and prove it using Gauss’s technique of reversing the terms. As a result, students are rarely
if ever presented with the challenge of finding a formula (which is clearly not the same as
being given the formula and then being asked to prove it).

But it is comparatively easy to lead students to an answer. We ask them to construct a
table of partial sums:

n Unsimplified sum of first n terms Simplified sum

1 a a

2 a+(a+d) 2a+d

3 a+(a+d)+(a+2d) 3a+3d

4 a+(a+d)+(a+2d)+(a+3d) 4a+6d

5 a+(a+d)+(a+2d)+(a+3d)+(a+4d) 5a+10d

We thus get a sequence of partial sums:

a, 2a+d, 3a+3d, 4a+6d, 5a+10d, 6a+15d, 7a+21d, . . . .
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But it is comparatively easy to lead students to an answer. We ask them to construct a table of partial 
sums:

We thus get a sequence of partial sums:

a,  2a+d,  3a+3d,  4a+6d,  5a+10d,  6a+15d,  7a+21d, . . . .

Now we must guess a formula for these expressions. The pattern in the sums is easy to see. Each sum is 
(naturally) a multiple of a added to a multiple of d. The coefficient of a is always equal to the number of 
terms (again, naturally so). What about the coefficient of d, the numbers 0, 1, 3, 6, 10, . . . ? These numbers 
should be familiar to students if they have studied the triangular numbers (which surely is a must-study 
topic at the middle school level), and they may know (or should know!) that the formula n(n + 1)/2 
generates the numbers. In this case, the sequence is displaced by one unit (it starts with 0 rather than 1, 
the second term is 1 rather than the first term, and so on), hence the formula that applies is (n − 1)n/2, 
obtained by replacing n in the previous formula by n−1. So it appears by an examination of the expressions 
that the sum Sn to n terms is given by:

Once the formula has been empirically found, it is easy to see that it must be correct: we get it by adding 
the ‘a’ terms and the ‘d’ terms separately. And it is easy to transform the formula to the usual forms (where 
‘last term’ means ‘nth term’):
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the second term is 1 rather than the first term, and so on), hence the formula that applies
is (n−1)n�2, obtained by replacing n in the previous formula by n−1. So it appears by an
examination of the expressions that the sum Sn to n terms is given by:

Sn = na+ (n−1)n
2

d.

Once the formula has been empirically found, it is easy to see that it must be correct: we
get it by adding the ‘a’ terms and the ‘d’ terms separately. And it is easy to transform the
formula to the usual forms (where ‘last term’ means ‘nth term’):

Sn = na+ (n−1)n
2

d = 2na+(n−1)nd
2

=
n�2a+(n−1)d�

2
=

n�a+�a+(n−1)d��
2

= number of terms× first term+ last term
2

= number of terms×average of first term and last term.
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The appropriate use of open source technology can enliven 
the mathematics classroom and open up many learning 
opportunities. In this article we will describe how Desmos, 

an online graphing calculator, can enable the visualization of 
concepts and lead to meaningful explorations by students. Having 
used Desmos for more than a year, I truly believe in the philosophy 
and vision of the Desmos team. This online calculator can instantly 
plot any equation, be it lines, parabolas, derivatives of functions or 
Fourier series. Data tables can be easily generated and these open 
up opportunities for curve fitting and modeling activities. Sliders 
make it a breeze to demonstrate function transformations. As 
Desmos runs on browser-based html5 technology, it works on any 
computer or tablet without requiring any downloads. It is intuitive, 
beautiful math. And best of all: it’s completely free.

In this article, we will take a tour of the features of Desmos and 
explore the possibilities it opens for a teacher and a student.

Graphing with 
Desmos – An online 
graphing calculator

Sangeeta Gulati
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Keywords: graphing calculator, freeware, dynamic, parameters, slider

“At Desmos, we imagine a world of universal math 
literacy, where no student thinks that math is too hard 
or too dull to pursue. We believe the key is learning by 
doing. When learning becomes a journey of exploration 
and discovery, anyone can understand – and enjoy! – 
math”- Desmos Team (www.desmos.com/about)
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Getting started with Desmos
Desmos may be accessed from www.desmos.com. You can create an account or sign in with your Google 
account. The “Launch Calculator” option may be used without an account but signing in gives you the 
option of saving the output for future reference.

To create a new graph, just type your expression in the expression list bar. As you are typing your 
expression, the calculator will immediately start drawing your graph on the graph paper (indeed, even 
before you finish typing!). Once you are done with that task, you can edit your function, hide the function, 
change the colour or delete the function.

To graph a single line, enter a linear expression like y = 2x + 3. To make a dynamic graph, use parameters 
in place of constants. Typing  y = mx + c gives you a prompt to add sliders (Fig 3), for m and c, clicking on 
‘all’ brings up a ready-to-use dynamic graph. Drag the sliders to create ‘live’ graphs on the screen!

You can use the same variables in different expressions to plot curves that change together. For example, 
Fig 4 shows the effect of varying m in the two expressions y = sin mx and y = m sin x. This allows the 
teacher and student to explore transformations and visually understand the effect of changing a 
parameter.

 
 
You can use the same variables in different expressions to plot curves that change together. For 

example, Fig 4 shows the effect of varying   in the two expressions          and          . 
This allows the teacher and student to explore transformations and visually understand the effect 
of a changing a parameter. 
There is no better way but to ‘see’ (Fig 5) two lines perpendicular to each other when their slopes 
are negative reciprocals of each other! Desmos brings up many such ‘aha’ moments. 

 

IS ANY SPECIAL SYNTAX NEEDED FOR THE INPUT? 

Typing expressions into the expression bar does not require the user to know any special syntax; 
one simply types in the function using a natural syntax (examples: sqrt (x) gives √ , abs(x) gives 
the modulus function    , pi gives  , and so on). Alternatively, we may use the ‘Functions’ key in the 
Desmos keyboard to obtain the required functions. 
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There is no better way but to ‘see’ (Fig 5) two lines perpendicular to each other when their slopes are 
negative reciprocals of each other! Desmos brings up many such ‘aha’ moments.

Is any special syntax needed for the input?
Typing expressions into the expression bar does not require the user to know any special syntax; one 
simply types in the function using a natural syntax (examples: sqrt (x) gives √x, abs (x) gives the modulus 
function |x|, pi gives π, and so on). Alternatively, we may use the ‘Functions’ key in the Desmos keyboard 
to obtain the required functions.

Graphing inequalities
Graphing inequalities (Fig 6) with Desmos is particularly easy. Try typing in y > x or y > 2x + 3 or y > x2 
+ 1 and see what happens. Or check the output from x2 + x + 3 > y > x2 + 1. The effect will surely come as 
a surprise! Desmos gives us great freedom to play with inequalities, enabling us to check the effects of 
making incremental changes in the defining constraints. We are spared much of the tedium of plotting by 
hand.
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GRAPHING FUNCTIONS AND THEIR DERIVATIVES 

Finding the derivative (Fig 7) of a function is as easy as typing          , or                for the 
second derivative, and you can build a tangent line accordingly using the point-slope form. This 
makes for an excellent demonstration of the relationship between a function and its derivative.   
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Graphing functions and their derivatives
Finding the derivative (Fig 7) of a function is as easy as typing d/dx f (x), or d/dx d/dx f (x) for the second 
derivative, and you can build a tangent line accordingly using the point-slope form. This makes for an 
excellent demonstration of the relationship between a function and its derivative.

Graphing functions defined in a piecewise manner
Plotting functions defined in piecewise manner can be handled in a single step. To limit the domain or 
range (x or y values of a graph), we simply add the restriction to the end of the equation in curly brackets, 
{}. For example, y = 2x {x > 0} would graph the line y = 2x for x greater than 0.

Using the ‘Table’ feature of Desmos
A significant feature of Desmos is the Table (Fig 8); it is excellent for creating a table of data just as one 
would do with paper and pen. As one enters the values in each row, the corresponding point gets plotted 
on the graph paper.

Using ‘expressions’ (+ add item), you can input a function which you think will best fit the curve and add a 
column in the table with the header f (x) which will automatically fill in the predicted values. This is most 
effective when instead of typing in one specific function we take a general function (Fig 9) and use sliders 
to find the curve of best fit.
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USING THE ‘TABLE’ FEATURE OF DESMOS 

A significant feature of Desmos is the Table (Fig 8); it is excellent for creating a table of data just as 
one would do with paper and pen. As one enters the values in each row, the corresponding point 
gets plotted on the graph paper. 

 

 
 

Using ‘expressions’ (+ add item), you can input a function which you think will best fit the curve and 
add a column in the table with the header      which will automatically fill in the predicted values. 
This is most effective when instead of typing in one specific function we take a general function    
(Fig 9) and use sliders to find the curve of best fit. 

 

 
Desmos also allows us to convert a function into a table of values (Fig 10)! And the fun doesn't stop 
here; if the table so generated does not make sense, as in case of trigonometric functions, we would 
like to have values of   expressed in terms of  , we can change each entry by typing in 'pi', 'pi/2' or 
'-2pi' and the corresponding points will get highlighted on the graph. It is also useful to know that 
for trigonometric functions, you can change the settings so that the scale on the  -axis is in radians 
(Fig 11). We can also add a column (Fig 12) for say cos (x) to do a comparison between the two 
functions. The possibilities are amazing! 
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Desmos also allows us to convert a function into a table of values (Fig 10)! And the fun doesn't stop here; 
if the table so generated does not make sense, as in the case of trigonometric functions, we would like to 
have values of x expressed in terms of π, we can change each entry by typing in 'pi', 'pi/2' or '-2pi' and the 
corresponding points will get highlighted on the graph. It is also useful to know that for trigonometric 
functions, you can change the settings so that the scale on the x - axis is in radians (Fig 11). We can also 
add a column (Fig 12) for, say, cos (x) to do a comparison between the two functions. The possibilities are 
amazing!

Samples of student work
Technology, if used appropriately, can enable teachers to create meaningful learning opportunities for 
students. The remaining part of the article will describe the explorations done by students of grade 11 on 
piecewise functions using Desmos. The task assigned to students required them to create an interesting 
picture, of their own choice, using the elementary functions and their properties. They had to suitably 
restrict the domains of the functions to obtain the desired output. During this process they developed 
many new insights on properties of functions. It is known that technology enables educators to help 
students unlock their potential, and through this exercise Desmos enabled me to witness this happening 
at first hand with my own students; the results far exceeded my expectations. The students threw 
themselves into the task with great enthusiasm. They learned about restricting domains of functions and 
transformations, they explored conics – a topic not discussed till then in class – and came up with beautiful 
art work (Figs 13, 14, 15, 16: work of Anvita, Prajwal and Narayani of Sanskriti School).

As they presented their work before the class, I could see the high level of understanding they had 
developed for the functions. I was amazed. What I could not achieve after doing numerous problems 
on Domain and Range of functions, the students had achieved on their own. They used sliders to create 
animated graphs which made their work a piece of art.
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here; if the table so generated does not make sense, as in case of trigonometric functions, we would 
like to have values of   expressed in terms of  , we can change each entry by typing in 'pi', 'pi/2' or 
'-2pi' and the corresponding points will get highlighted on the graph. It is also useful to know that 
for trigonometric functions, you can change the settings so that the scale on the  -axis is in radians 
(Fig 11). We can also add a column (Fig 12) for say cos (x) to do a comparison between the two 
functions. The possibilities are amazing! 

 

 
 

SAMPLES OF STUDENT WORK 

Technology, if used appropriately, can enable teachers to create meaningful learning opportunities 
for students. The remaining part of the article will describe the explorations done by students of 
grade 11 on piecewise functions using Desmos. The task assigned to students required them to 
create an interesting picture, of their own choice, using the elementary functions and their 
properties. They had to suitably restrict the domains of the functions to obtain the desired output.  
During this process they developed many new insights on properties of functions. It is known that 
technology enables educators to help students unlock their potential, and through this exercise 
Desmos enabled me to witness this happening at first hand with my own students; the results far 
exceeded my expectations. The students threw themselves into the task with great enthusiasm. 
They learned about restricting domains of functions and transformations, they explored conics – a 
topic not discussed till then in class – and came up with beautiful art work (Figs 13, 14, 15, 16: work 
of  Anvita, Prajwal and Narayani of Sanskriti School).  
As they presented their work before the class, I could see the high level of understanding they had 
developed for the functions. I was amazed. What I could not achieve after doing numerous 
problems on Domain and Range of functions, the students had achieved on their own. They used 
sliders to create animated graphs which made their work a piece of art. 
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I hope this tour of Desmos has inspired you to try this beautiful tool for yourself, and explore the many 
possibilities it opens for all of us.

I am thankful to my students especially Prajwal, Anvita, Harshita and Narayani who put in precious 
time and effort to create such beautiful work; they reconfirmed my belief that learning and teaching of 
Mathematics can be fun!

Web links
[1]	 www.desmos.com/
[2]	 http://support.desmos.com/home
[3]	 https://www.youtube.com/user/desmosinc
[4]	 http://dynamath.wikispaces.com/Maths+and+Art (to see more samples of students’ work)

 

 
 

 
 
 

 
 
I hope this tour of Desmos has inspired you to try this beautiful tool for yourself, and explore the 
many possibilities it opens for all of us.  

 
 
 

 
 
I hope this tour of Desmos has inspired you to try this beautiful tool for yourself, and explore the 
many possibilities it opens for all of us.  

SANGEETA GULATI is Academic Coordinator and Head of Math Department at Sanskriti School, New Delhi. 
She has taught Mathematics for over twenty years. She is actively involved in exploring the use of technology 
in teaching and learning of mathematics. She conducts workshop on GeoGebra, Geometer's Sketchpad and 
Online Resources. She is a regular resource person with NCERT in developing ICT material and has developed 
video lessons with Central Institute of Educational Technology, NCERT. Her wikispace (dynamath.wikispaces.
com), product of her action based research project during Fulbright Distinguish Award in Teaching fellowship 
in 2011, is a great resource for mathematics teachers.
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First digits 

In this section we solve the following problem:

Find the smallest perfect square N whose digits start with 1234567.

It is assumed that we are working in base ten. Note that we do not know how many digits 
N has. It may seem that such a problem can be solved only using trial and error, by playing 
with a calculator, but we shall show otherwise. (We do use a calculator, but it is only for 
computation of two square roots.)

The number of digits in N is either odd or even. If it is the former, let the number of digits be 
denoted by 2k + 1; else let it be denoted by 2k + 2. Since a number with n digits lies between 
10n−1 and 10n −1 (inclusive at both ends), the following can be said:

(The dots indicate digits of N which we do not know as yet.) We consider both possibilities 
and see which one gives us a smaller perfect square.

Adventures in problem solving

FIRST AND LAST DIGITS OF PERFECT SQUARES

C�MαC

FIRST DIGITS

In this section we solve the following problem:

Find the smallest perfect square N whose digits start with 1234567.

It is assumed that we are working in base ten (else the question lacks meaning). Note that
we do not know how many digits N has. It may seem that such a problem can be solved
only using trial and error, by playing with a calculator, but we shall show otherwise. (We
do use a calculator, but it is only for computation of two square roots.)

The number of digits in N is either odd or even. If it is the former, let the number of
digits be denoted by 2k+1; else let it be denoted by 2k+2. Since a number with n digits
lies between 10n−1 and 10n−1 (inclusive at both ends), the following can be said:

● If N has 2k+1 digits, then

N = 1234567 . . .�������������������������������������������������
2k+1 digits

= 1.234567 . . .×102k.

● If N has 2k+2 digits, then

N = 1234567 . . .�������������������������������������������������
2k+2 digits

= 1.234567 . . .×102k+1 = 12.34567 . . .×102k.

(The dots indicate digits of N which we do not know as yet.) We consider both possibilities
and see which one gives us a smaller perfect square.
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Suppose that N has an odd number of digits In this case , so:

1.234567 × 10 .

(Note the strict inequality sign on the right side. Note also that the dots have fallen away now.) Taking
square roots (this is where we need the calculator!) we get:

1.111110705 × 10 ≤ √ .

Observing the decimal expansions carefully, we write this as:

1111110.705 × 10 ≤ √

where . From this it is clear that the least possible value of √ is 1111111 (obtained by taking
= 0, i.e., 10 = 1

1111111 = 1234567654321,

a number with thirteen digits. This is the least square of the required type, i.e., whose digits start
1234567 …, given that it has an odd number of digits.

have:
11111107.05 × 10 ≤ √

where . This implies that the next smallest such square (after 1111111 ) is 11111108 which
11111108 = 123456720987664. And after this comes

11111109 = 123456743209881.

Suppose that N has an even number of digits In this case , so:

12.34567 × 10 .

(As earlier, note the strict inequality sign on the right side, and the fact that the dots have fallen away.)
Taking square roots we get:

3.513640562 × 10 ≤ √ .

(Now you will see why we rewrote 1.234567 … × 10 as 12.34567 … × 10 .) Hence we have:

3513640.562 × 10 ≤ √ ,

where . From this it is clear that the least possible value of √ is 3513641
that

3513641 = 12345673076881,

a number with fourteen digits. This is the least square of the required type, i.e., whose digits start
1234567 …, given that it has an even number of digits.

digits. For we also have:

35136405.62 × 10 ≤ √ ,

where .

2

This implies that the next smallest such square is 35136406�, a number with sixteen digits:
35136406� = 1234567026596836. Other squares which also have sixteen digits and start with 1234567
are 35136407� which equals 1234567096869649; 35136408� which equals 1234567167142464; …;
and 35136419� which equals 1234567940143561.
So the answer to the stated problem is:

• The least such square is a number with thirteen digits, 1234567654321.

• The next such square is a number with fourteen digits, 12345673076881.

We invite you to �ind the smallest perfect cube whose digits start with 1111111.

Last Digits

The analysis carried out in the previous section shows, in effect, that the initial digits of a perfect square
can be any string whatever: specify any �inite string of digits, and we can �ind a perfect square with those
as the initial digits.
What about the digits that come “at the opposite end”of a perfect square? Can any corresponding
statement be made? This question brings up some interesting mathematics and also some surprises.
Consider the terminating digit (“last digit”or units digit). It is known that the last digit of a perfect square
is one of {0, 1, 4, 5, 6, 9}; there are six possibilities. So if we select a digit at random, the probability that it
is a possible last digit of a perfect square is 0.6.
Howmany possibilities are there for the last two digits (when viewed as a two-digit number)? Example:
Since 23� = 529 and 28� = 784, two such numbers are 29 and 84. Once again, we count the possibilities
using a computer. We �ind that there are 22 in all:

00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41,
44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96.

Hence, if we select an ordered pair of digits at random (there are 10� = 100 such pairs), the probability
that there exists a perfect square with those as the last two digits (in the same order) is 0.22. Note the
substantial drop in probability, from 0.6 to 0.22.
We move a step higher. Howmany possibilities are there for the last three digits? It is much less obvious
what the answer is, so we head back to the computer and let it generate the answer. It turns out that there
are 159 possibilities for the last three digits:

000, 001, 004, 009, 016, 024, 025, 036, 041, 044, 049, 056, 064, 076, 081, 084,
089, 096, 100, 104, 116, 121, 124, 129, 136, 144, 156, 161, 164, 169, 176, 184,
196, 201, 204, 209, 216, 224, 225, 236, 241, 244, 249, 256, 264, 276, 281, 284,
289, 296, 304, 316, 321, 324, 329, 336, 344, 356, 361, 364, 369, 376, 384, 396,
400, 401, 404, 409, 416, 424, 436, 441, 444, 449, 456, 464, 476, 481, 484, 489,
496, 500, 504, 516, 521, 524, 529, 536, 544, 556, 561, 564, 569, 576, 584, 596,
600, 601, 604, 609, 616, 624, 625, 636, 641, 644, 649, 656, 664, 676, 681, 684,
689, 696, 704, 716, 721, 724, 729, 736, 744, 756, 761, 764, 769, 776, 784, 796,
801, 804, 809, 816, 824, 836, 841, 844, 849, 856, 864, 876, 881, 884, 889, 896,
900, 904, 916, 921, 924, 929, 936, 944, 956, 961, 964, 969, 976, 984, 996.

Therefore, if we select an ordered triple of digits at random (there are 10� = 1000 such triples), the
probability that there exists a perfect square with those as the last three digits (in the same order) is
0.159.

3
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Suppose that N has an odd number of digits In this case , so:

1.234567 × 10 .

(Note the strict inequality sign on the right side. Note also that the dots have fallen away now.) Taking
square roots (this is where we need the calculator!) we get:

1.111110705 × 10 ≤ √ .

Observing the decimal expansions carefully, we write this as:

1111110.705 × 10 ≤ √

where . From this it is clear that the least possible value of √ is 1111111 (obtained by taking
= 0, i.e., 10 = 1

1111111 = 1234567654321,

a number with thirteen digits. This is the least square of the required type, i.e., whose digits start
1234567 …, given that it has an odd number of digits.

have:
11111107.05 × 10 ≤ √

where . This implies that the next smallest such square (after 1111111 ) is 11111108 which
11111108 = 123456720987664. And after this comes

11111109 = 123456743209881.

Suppose that N has an even number of digits In this case , so:

12.34567 × 10 .

(As earlier, note the strict inequality sign on the right side, and the fact that the dots have fallen away.)
Taking square roots we get:

3.513640562 × 10 ≤ √ .

(Now you will see why we rewrote 1.234567 … × 10 as 12.34567 … × 10 .) Hence we have:

3513640.562 × 10 ≤ √ ,

where . From this it is clear that the least possible value of √ is 3513641
that

3513641 = 12345673076881,

a number with fourteen digits. This is the least square of the required type, i.e., whose digits start
1234567 …, given that it has an even number of digits.

digits. For we also have:

35136405.62 × 10 ≤ √ ,

where .

2

This implies that the next smallest such square is 35136406�, a number with sixteen digits:
35136406� = 1234567026596836. Other squares which also have sixteen digits and start with 1234567
are 35136407� which equals 1234567096869649; 35136408� which equals 1234567167142464; …;
and 35136419� which equals 1234567940143561.
So the answer to the stated problem is:

• The least such square is a number with thirteen digits, 1234567654321.

• The next such square is a number with fourteen digits, 12345673076881.

We invite you to �ind the smallest perfect cube whose digits start with 1111111.

Last Digits

The analysis carried out in the previous section shows, in effect, that the initial digits of a perfect square
can be any string whatever: specify any �inite string of digits, and we can �ind a perfect square with those
as the initial digits.
What about the digits that come “at the opposite end”of a perfect square? Can any corresponding
statement be made? This question brings up some interesting mathematics and also some surprises.
Consider the terminating digit (“last digit”or units digit). It is known that the last digit of a perfect square
is one of {0, 1, 4, 5, 6, 9}; there are six possibilities. So if we select a digit at random, the probability that it
is a possible last digit of a perfect square is 0.6.
Howmany possibilities are there for the last two digits (when viewed as a two-digit number)? Example:
Since 23� = 529 and 28� = 784, two such numbers are 29 and 84. Once again, we count the possibilities
using a computer. We �ind that there are 22 in all:

00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41,
44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96.

Hence, if we select an ordered pair of digits at random (there are 10� = 100 such pairs), the probability
that there exists a perfect square with those as the last two digits (in the same order) is 0.22. Note the
substantial drop in probability, from 0.6 to 0.22.
We move a step higher. Howmany possibilities are there for the last three digits? It is much less obvious
what the answer is, so we head back to the computer and let it generate the answer. It turns out that there
are 159 possibilities for the last three digits:

000, 001, 004, 009, 016, 024, 025, 036, 041, 044, 049, 056, 064, 076, 081, 084,
089, 096, 100, 104, 116, 121, 124, 129, 136, 144, 156, 161, 164, 169, 176, 184,
196, 201, 204, 209, 216, 224, 225, 236, 241, 244, 249, 256, 264, 276, 281, 284,
289, 296, 304, 316, 321, 324, 329, 336, 344, 356, 361, 364, 369, 376, 384, 396,
400, 401, 404, 409, 416, 424, 436, 441, 444, 449, 456, 464, 476, 481, 484, 489,
496, 500, 504, 516, 521, 524, 529, 536, 544, 556, 561, 564, 569, 576, 584, 596,
600, 601, 604, 609, 616, 624, 625, 636, 641, 644, 649, 656, 664, 676, 681, 684,
689, 696, 704, 716, 721, 724, 729, 736, 744, 756, 761, 764, 769, 776, 784, 796,
801, 804, 809, 816, 824, 836, 841, 844, 849, 856, 864, 876, 881, 884, 889, 896,
900, 904, 916, 921, 924, 929, 936, 944, 956, 961, 964, 969, 976, 984, 996.

Therefore, if we select an ordered triple of digits at random (there are 10� = 1000 such triples), the
probability that there exists a perfect square with those as the last three digits (in the same order) is
0.159.

3

Last digits
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We see the makings of a curious sequence here. Let denote the number of possible -digit ‘endings’of a
perfect square, so = 6, = 22, = 159. Using a computer we generate more values of the sequence
(I used Mathematica); here is what we get:

1 2 3 4 5 6
6 22 159 1044 9121 78132

What is the law of formation of the sequence? It is far from obvious!

We shall analyze this very interesting problem on some other occasion. For now we only give the answer.
It can be shown (see references [1] and [2] for details) that:

⎧
⎪

⎨
⎪
⎩

5 ⋅ 10 + 40 ⋅ 5 + 7 ⋅ 2 + 56
72

if is even,

5 ⋅ 10 + 50 ⋅ 5 + 11 ⋅ 2 + 110
72

if is odd.

For example, the formula gives: , which is correct.
The following also can be shown: for all ,

What a very surprising pair of relations! For now we shall leave you to marvel at them.
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We see the makings of a curious sequence here. Let 𝑎𝑎� denote the number of possible 𝑘𝑘-digit ‘endings’ of
a perfect square, so 𝑎𝑎� = 6, 𝑎𝑎� = 22, 𝑎𝑎� = 159. Using a computer we generate more values of the
sequence (I usedMathematica); here is what we get:

𝑘𝑘 1 2 3 4 5 6
𝑎𝑎� 6 22 159 1044 9121 78132

What is the law of formation of the sequence? It is far from obvious!
We shall analyze this very interesting problem on some other occasion. For now we only give the answer.
It can be shown (see references [1] and [2] for details) that:

𝑎𝑎𝑎𝑎𝑎𝑎 𝑎
⎧⎪
⎨⎪⎩

5 ⋅ 10� + 40 ⋅ 5� + 7 ⋅ 2� + 56
72 if 𝑘𝑘 is even,

5 ⋅ 10� + 50 ⋅ 5� + 11 ⋅ 2� + 110
72 if 𝑘𝑘 is odd.

For example, the formula gives: 𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎      𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎  , which is correct.
The following also can be shown: for all 𝑘𝑘 𝑘 𝑘,

𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

What a very surprising pair of relations! For now we shall leave you to marvel at them.
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(i) W. �enney, On the �inal digits of squares, Amer. Math. Monthly, 67 (1960), 1000–1002.
(ii) Online Encyclopedia of Integer Sequences,
https://oeis.org/search?q=1%2C+6%2C+22%2C+159%2C+1044%2C+9121%2C+78132&sort=&language=english&go=Search

4



At Right Angles  | Vol. 3, No. 2, July 2014 71

pr
ob

le
m

 c
or

ne
r

Problems for the 
Middle School
Problem Editor : R. Athmaraman

Problem III-2-M.1 
What is the least multiple of 9 which has no odd 
digits?

Problem III-2-M.2 
Which number is larger: 3111 or 1714?

Problem III-2-M.3 
What is the remainder when 20152014 is divided 
by 2014?

Problem III-2-M.4 
Find the least natural number larger than 1 which 
is simultaneously a perfect square, a perfect cube, 
a perfect fourth power, a perfect fifth power and a 
perfect sixth power. How many such numbers are 
there? 

Problem III-2-M.5 
A group of ten people (men and women), sit 
side by side at a long table, all facing the same 
direction. In this particular group, ladies always 
tell the Truth while the men always lie. Each of 

the ten people announces: “There are more men 
on my left, than on my right.” How many men 
are there in the group? (This problem has been 
adapted from the Berkeley Math Circle, Monthly 
Contests.)

SOLUTIONS OF PROBLEMS IN ISSUE-III-1

Solution to problem III-1-M.1 

Show that the following number is a perfect square 
for every positive integer n:

Let an denote the given integer; e.g., a1 = 11−2 = 
9, a2 = 1111−22 = 1089. Observe that a1 = 32 and 
a2 = 332. That gives us a clue to the solution. Let 
bn denote the number with n ones, e.g., b4 = 1111. 
The proof that an is a perfect square for all n is 
illustrated for the case n = 4 (the general case is 
written the same way):

Problems for Solution

PROBLEMS FOR THE MIDDLE SCHOOL

ATHMARAMAN R

PROBLEMS FOR SOLUTION

Problem III-2-M.1 What is the least multiple of 9 which has no odd digits?

Problem III-2-M.2 Which number is larger: 3111 or 1714?

Problem III-2-M.3 What is the remainder when 20152014 is divided by 2014?

Problem III-2-M.4 Find the least natural number larger than 1 which is simultaneously a
perfect square, a perfect cube, a perfect fourth power, a perfect fifth power and a
perfect sixth power. How many such numbers are there?

Problem III-2-M.5 A group of ten people (men and women), sit side by side at a long table,
all facing the same direction. In this particular group, ladies always tell the Truth
while the men always lie. Each of the ten people announces: “There are more
men on my left, than on my right.” How many men are there in the group? (This
problem has been adapted from the Berkeley Math Circle, Monthly Contests.)

SOLUTIONS OF PROBLEMS IN ISSUE-III-1

Solution to problem III-1-M.1 Show that the following number is a perfect square for every
positive integer n:

111111 . . .111111�������������������������������������������������������������������������������������������������
2n digits

−222 . . .222������������������������������������������
n digits

.

Let an denote the given integer; e.g., a1 = 11−2 = 9, a2 = 1111−22 = 1089. Observe
that a1 = 32 and a2 = 332. That gives us a clue to the solution. Let bn denote the
number with n ones, e.g., b4 = 1111. The proof that an is a perfect square for all n
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is illustrated for the case n = 4 (the general case is written the same way):

a4 = 11111111−2222

= 11110000−1111 = 1111×10000−1111×1

= 1111×(104−1) = 1111×9999

= 1111×1111×9 = 1111×1111×3×3 = (3×1111)2.

In general, an is the square of the number 333 . . .333 which has n threes.

Solution to problem III-1-M.2 On a digital clock, the display reads 6 ∶ 38. What will the
clock display twenty-eight digit changes later?

Let us compute the digit-changes, step by step.

From To # digit changes Cumulative total

6 ∶ 38 6 ∶ 39 1 1

6 ∶ 39 6 ∶ 40 2 3

6 ∶ 40 6 ∶ 49 9 12

6 ∶ 49 6 ∶ 50 2 14

6 ∶ 50 6 ∶ 59 9 23

6 ∶ 59 7 ∶ 00 3 26

7 ∶ 00 7.01 1 27

7.01 7 ∶ 02 1 28

The time is 7 ∶ 02 after twenty-eight digit changes are over.

Solution to problem III-1-M.3 The figure shows a hall ABCDEF with right angles at its
corners. Its area is 2520 sq units, and AB = BC, CD = 30 units, AF = 60 units. A
point P is located on EF such that line CP divides the hall into two parts with
equal area. Find the length EP.

Let AB = x; then BC = x. The area of the hall is then 60(30+x)−30x = 1800+30x
which equals 2520 (given information; see Figure 1). Hence x = 720/30 = 24,
which leads to DE = 60−24 = 36.

Let PE = y. Then the area of the trapezium CDEP is 1
2 ×2520 = 1260. Hence:

1
2
(30+y)×36 = 1260, ∴ 30+y = 2520

36
= 70, ∴ y = 40.
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Solution to problem III-1-M.4 In a circle with radius 4 units, a rectangle and an equilateral
triangle are inscribed. If their areas are equal, find the dimensions of the rectangle.

Let the side of the equilateral triangle be a, and let the rectangle have dimensions
x,y (see Figure 2). The radius of the circle is 4 units. The height of the equilateral
triangle is a×

√
3/2, and since the radius of the circle is 2/3 of the height, we get:

4 = 2
3
×a×

√
3

2
, ∴ a = 4

√
3.
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In general, 𝑎𝑎� is the square of the number
333…333which has 𝑛𝑛 threes.
Solution to problem III-1-M.2 On a digital clock,
the display reads 6 ∶ 38. What will the clock display
twenty-eight digit changes later?

Let us compute the digit-changes, step by step.

The time is 7 ∶ 02 after twenty-eight digit changes
are over.
Solution to problem III-1-M.3 �he �igure shows a
hall 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 with right angles at its corners. Its
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𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴 units. A point 𝑃𝑃 is located on 𝐸𝐸𝐸𝐸 such that
line 𝐶𝐶𝐶𝐶 divides the hall into two parts with equal
area. Find the length 𝐸𝐸𝐸𝐸.
Let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴; then 𝐵𝐵𝐵𝐵𝐵𝐵𝐵  . The area of the hall is
then 60(30 + 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   which
equals 2520 (given information; see Figure 1).
Hence 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥  𝑥, which leads to
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷      .
Let 𝑃𝑃𝑃𝑃𝑃  𝑃𝑃. Then the area of the trapezium 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
is �

� × 2520 =1 260. Hence:
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In general, 𝑎𝑎� is the square of the number
333…333which has 𝑛𝑛 threes.
Solution to problem III-1-M.2 On a digital clock,
the display reads 6 ∶ 38. What will the clock display
twenty-eight digit changes later?

Let us compute the digit-changes, step by step.

The time is 7 ∶ 02 after twenty-eight digit changes
are over.
Solution to problem III-1-M.3 �he �igure shows a
hall 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 with right angles at its corners. Its
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line 𝐶𝐶𝐶𝐶 divides the hall into two parts with equal
area. Find the length 𝐸𝐸𝐸𝐸.
Let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴; then 𝐵𝐵𝐵𝐵𝐵𝐵𝐵  . The area of the hall is
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equals 2520 (given information; see Figure 1).
Hence 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥  𝑥, which leads to
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Solution to problem III-1-M.2 On a digital clock,
the display reads 6 ∶ 38. What will the clock display
twenty-eight digit changes later?

Let us compute the digit-changes, step by step.

The time is 7 ∶ 02 after twenty-eight digit changes
are over.
Solution to problem III-1-M.3 �he �igure shows a
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area. Find the length 𝐸𝐸𝐸𝐸.
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equals 2520 (given information; see Figure 1).
Hence 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥  𝑥, which leads to
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Solution to problem III-1-M.4 In a circle with
radius 4 units, a rectangle and an equilateral triangle
are inscri�ed. If their areas are equal, �ind the
dimensions of the rectangle. Let the side of the
equilateral triangle be 𝑎𝑎, and let the rectangle have
dimensions 𝑥𝑥𝑥 𝑥𝑥 (see Figure 2). The radius of the
circle is 4 units. The height of the equilateral triangle
is 𝑎𝑎 𝑎 √3/2, and since the radius of the circle is 2/3
of the height, we get:

4 = 2
3 × 𝑎𝑎 𝑎 √3

2 , ∴ 𝑎𝑎 𝑎𝑎 √3.

Hence the area of the triangle is
√�
� 𝑎𝑎� = √�

� × 48 = 12√3. This is also the area of the
rectangle. Since the diagonal of the rectangle has
length 8, we have: 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 √3 and 𝑥𝑥� + 𝑦𝑦� = 8�. We
must solve these equations for 𝑥𝑥𝑥 𝑥𝑥. The second
equation yields 𝑦𝑦� = 64 − 𝑥𝑥�. Substituting into the
�irst one and squaring, we get:

𝑥𝑥�(64 − 𝑥𝑥�) = 432, ∴ 𝑥𝑥� − 64𝑥𝑥� + 432 = 0.

Treating this as a quadratic equation in 𝑥𝑥�, we get:

�� � �� � √��� � � 𝑎 ���
� � �� � √����

� � ����√��.

So the sides of the rectangle are�32 + 4√37 and
�32 − 4√37.

Solution to problem III-1-M.5 Find the value of

� 2014�
2012 × 2013� − � 2012�

2013 × 2014� .

Let 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 . The expression within the �irst ‘⌊ ⌋’
then equals:

(𝑎𝑎 𝑎𝑎𝑎 �
(𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 = 𝑎𝑎� + 3𝑎𝑎� + 3𝑎𝑎 𝑎𝑎

𝑎𝑎� − 𝑎𝑎

= 𝑎𝑎 𝑎𝑎𝑎   8
𝑎𝑎 𝑎𝑎  − 1

𝑎𝑎 ,

∴ � (𝑎𝑎 𝑎𝑎𝑎 �
(𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 � = 𝑎𝑎 + 4𝑥

since 1> �
��� > �

� . Similarly, the expression
within the second ‘⌊ ⌋’ equals:

(𝑎𝑎 𝑎𝑎𝑎 �
𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎  =

𝑎𝑎� − 3𝑎𝑎� − 3𝑎𝑎 𝑎𝑎
𝑎𝑎� + 𝑎𝑎

= 𝑎𝑎 𝑎𝑎𝑎   8
𝑎𝑎 𝑎𝑎  − 1

𝑎𝑎 ,

∴ � (𝑎𝑎 𝑎𝑎𝑎 �
𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 � = 𝑎𝑎 − 4𝑥

since 1> �
��� > �

� . Therefore the given quantity
equals (𝑎𝑎 𝑎𝑎𝑎𝑎𝑎   𝑎𝑎 𝑎𝑎𝑎𝑎𝑎   .

3
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Solution to problem III-1-M.2 On a digital clock,
the display reads 6 ∶ 38. What will the clock display
twenty-eight digit changes later?

Let us compute the digit-changes, step by step.

The time is 7 ∶ 02 after twenty-eight digit changes
are over.
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line 𝐶𝐶𝐶𝐶 divides the hall into two parts with equal
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equals 2520 (given information; see Figure 1).
Hence 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥  𝑥, which leads to
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Solution to problem III-1-M.4 In a circle with
radius 4 units, a rectangle and an equilateral triangle
are inscri�ed. If their areas are equal, �ind the
dimensions of the rectangle. Let the side of the
equilateral triangle be 𝑎𝑎, and let the rectangle have
dimensions 𝑥𝑥𝑥 𝑥𝑥 (see Figure 2). The radius of the
circle is 4 units. The height of the equilateral triangle
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equation yields 𝑦𝑦� = 64 − 𝑥𝑥�. Substituting into the
�irst one and squaring, we get:

𝑥𝑥�(64 − 𝑥𝑥�) = 432, ∴ 𝑥𝑥� − 64𝑥𝑥� + 432 = 0.

Treating this as a quadratic equation in 𝑥𝑥�, we get:

�� � �� � √��� � � 𝑎 ���
� � �� � √����

� � ����√��.

So the sides of the rectangle are�32 + 4√37 and
�32 − 4√37.

Solution to problem III-1-M.5 Find the value of

� 2014�
2012 × 2013� − � 2012�

2013 × 2014� .

Let 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 . The expression within the �irst ‘⌊ ⌋’
then equals:

(𝑎𝑎 𝑎𝑎𝑎 �
(𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 = 𝑎𝑎� + 3𝑎𝑎� + 3𝑎𝑎 𝑎𝑎

𝑎𝑎� − 𝑎𝑎

= 𝑎𝑎 𝑎𝑎𝑎   8
𝑎𝑎 𝑎𝑎  − 1

𝑎𝑎 ,

∴ � (𝑎𝑎 𝑎𝑎𝑎 �
(𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 � = 𝑎𝑎 + 4𝑥

since 1> �
��� > �

� . Similarly, the expression
within the second ‘⌊ ⌋’ equals:

(𝑎𝑎 𝑎𝑎𝑎 �
𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎  =

𝑎𝑎� − 3𝑎𝑎� − 3𝑎𝑎 𝑎𝑎
𝑎𝑎� + 𝑎𝑎

= 𝑎𝑎 𝑎𝑎𝑎   8
𝑎𝑎 𝑎𝑎  − 1

𝑎𝑎 ,

∴ � (𝑎𝑎 𝑎𝑎𝑎 �
𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 � = 𝑎𝑎 − 4𝑥

since 1> �
��� > �

� . Therefore the given quantity
equals (𝑎𝑎 𝑎𝑎𝑎𝑎𝑎   𝑎𝑎 𝑎𝑎𝑎𝑎𝑎   .
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, and since the 
radius of the circle is 2/3 of the height, we get

Solution to problem III-1-M.4 In a circle with
radius 4 units, a rectangle and an equilateral triangle
are inscri�ed. If their areas are equal, �ind the
dimensions of the rectangle. Let the side of the
equilateral triangle be 𝑎𝑎, and let the rectangle have
dimensions 𝑥𝑥𝑥 𝑥𝑥 (see Figure 2). The radius of the
circle is 4 units. The height of the equilateral triangle
is 𝑎𝑎 𝑎 √3/2, and since the radius of the circle is 2/3
of the height, we get:

4 = 2
3 × 𝑎𝑎 𝑎 √3

2 , ∴ 𝑎𝑎 𝑎𝑎 √3.

Hence the area of the triangle is
√�
� 𝑎𝑎� = √�

� × 48 = 12√3. This is also the area of the
rectangle. Since the diagonal of the rectangle has
length 8, we have: 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 √3 and 𝑥𝑥� + 𝑦𝑦� = 8�. We
must solve these equations for 𝑥𝑥𝑥 𝑥𝑥. The second
equation yields 𝑦𝑦� = 64 − 𝑥𝑥�. Substituting into the
�irst one and squaring, we get:

𝑥𝑥�(64 − 𝑥𝑥�) = 432, ∴ 𝑥𝑥� − 64𝑥𝑥� + 432 = 0.

Treating this as a quadratic equation in 𝑥𝑥�, we get:

�� � �� � √��� � � 𝑎 ���
� � �� � √����

� � ����√��.

So the sides of the rectangle are�32 + 4√37 and
�32 − 4√37.

Solution to problem III-1-M.5 Find the value of

� 2014�
2012 × 2013� − � 2012�

2013 × 2014� .

Let 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 . The expression within the �irst ‘⌊ ⌋’
then equals:

(𝑎𝑎 𝑎𝑎𝑎 �
(𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 = 𝑎𝑎� + 3𝑎𝑎� + 3𝑎𝑎 𝑎𝑎

𝑎𝑎� − 𝑎𝑎

= 𝑎𝑎 𝑎𝑎𝑎   8
𝑎𝑎 𝑎𝑎  − 1

𝑎𝑎 ,

∴ � (𝑎𝑎 𝑎𝑎𝑎 �
(𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 � = 𝑎𝑎 + 4𝑥

since 1> �
��� > �

� . Similarly, the expression
within the second ‘⌊ ⌋’ equals:

(𝑎𝑎 𝑎𝑎𝑎 �
𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎  =

𝑎𝑎� − 3𝑎𝑎� − 3𝑎𝑎 𝑎𝑎
𝑎𝑎� + 𝑎𝑎

= 𝑎𝑎 𝑎𝑎𝑎   8
𝑎𝑎 𝑎𝑎  − 1

𝑎𝑎 ,

∴ � (𝑎𝑎 𝑎𝑎𝑎 �
𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 � = 𝑎𝑎 − 4𝑥

since 1> �
��� > �

� . Therefore the given quantity
equals (𝑎𝑎 𝑎𝑎𝑎𝑎𝑎   𝑎𝑎 𝑎𝑎𝑎𝑎𝑎   .
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Problems for Solution

Problem III-2-S.1

Let be a positive integer not divisible by 2 nor by
5. Prove that there exists a positive integer ,
depending on , such that the number 111 … 1,
where the digit 1 is repeated times, is divisible
by .

Problem III-2-S.2

LetԹ be the set of all real numbers, and let be a
real number, . Determine a function

such that , for all
.

Problem III-2-S.3

Determine all three-digit numbers such that: (i)
is divisible by 11, (ii) is equal to the sum

of the squares of the digits of . (This problem
appeared in the International Mathematical
Olympiad 1960.)

Problem III-2-S.4

You are given a right circular conical vessel of
height݄ with the apex downwards. Then it is
turned upside down and it is observed that water
level is at a height ݄ from the base. Prove that݄ + ( ) .

Can ݄ , ݄ and all be positive integers?

Problem III-2-S.5

Let }
= 5 and:

|, for all

Prove that = 1
positive integers .

Solutions of Problems in Issue-III-1

Solution to problem III-1-S.1 Let

, where are positive

integers. Show that there exists an integer such

that is a composite number.

We shall prove this by actually exhibiting such an

integer . Let ; then . Now

consider the value of :
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Problem for the 
Senior SchoolĕėĎęčĜĎďĎę ĉĊ ƭ ĘčĆĎđĊĘč ĘčĎėĆđĎ

Problems for Solution

Solutions of problems in Issue-III-1



Since ܽǡ ܾǡ ܿ are positive integersǡ ݊ ൐ ͳ andܽ݊ ൅ ʹܽ ൅ ܾ ൅ ͳ ൐ ͳǤ So ݂ሺ݊ ൅ ͳሻ is a product oftwo integers both of which exceed ͳǤ Therefore݂ሺ݊ ൅ ͳሻ is compositeǤ
Solution to problem IIIǦͳǦSǤʹ Show that the
arithmetic progression ͳǡ ͷǡ ͻǡ ͳ͵ǡ ͳ͹ǡ ʹͳǡ ʹͷǡ ʹͻǡ͵͵ǡ ǥcontains inϔinitely many prime numbersǤAnother way of expressing this isǣ Show that there
are inϔinitely many primes of the form Ͷ݇ ൅ ͳǤ It sohappens that the corresponding problem withͶ݇ െ ͳ instead of Ͷ݇ ൅ ͳ is easier to solveǤ This isbecause of the following propertyǣ The product of
numbers all of the form Ͷ݇ ൅ ͳ is also of that formǤFrom this it followsǣ If an odd positive integer ݊ is
of the form Ͷ݇ െ ͳǡ then it has at least one prime
factor of that formǤNow consider the primes of the form Ͷ݇ െ ͳǤ Theyareǣ ͵ǡ ͹ǡ ͳͳǡ ͳͻǡ ǥǤ Suppose there is a last suchprimeǡ say Ǥ݌ Now construct the following number݊ǣ ݊ ൌ Ͷሺ͵ ൈ ͹ ൈ ͳͳ ൈڮ ൈ ሻ݌ െ ͳǤThis is of the form Ͷ݇ െ ͳǡ so it has a prime factorݍ of this formǤ The prime ݍ cannot be any of ͵ǡ ͹ǡͳͳǡ ǥǡ ǡ݌ as ݊ is not divisible by these primesǤ Sowe have found a new prime of the form Ͷ݇ െ ͳǤHence there cannot be a Ǯlast primeǯ of this formǤTherefore there are inϐinitely many primes of theform Ͷ݇ െ ͳǤThis method of proof does not work for primes ofthe form Ͷ݇ ൅ ͳ because we cannot make astatement like this oneǣ ǮIf ݊ is of the form Ͷ݇ ൅ ͳǡthen it has at least one prime factor of that formǤǯȋAn easy counterexample to this hypothesis is thenumber ʹͳ ൌ ͵ ൈ ͹ǤȌ Some other approach isneededǤ This Ǯother approachǯ is provided by thefollowing atǦϐirstǦsightǦsurprising fact which wedo not prove hereǣ The prime factors of a number
of the form Ͷ݉ଶ ൅ ͳ are all of the form Ͷ݇ ൅ ͳǤExamplesǣ Ͷ ൈ Ͷଶ ൅ ͳ ൌ ͸ͷ ൌ ͷ ൈ ͳ͵ǡ andͶ ൈ ͸ଶ ൅ ͳ ൌ ͳͶͷ ൌ ͷ ൈ ʹͻǤ Taking this to be afactǡ the rest of the proof is easyǤSuppose that there is a last prime ݌ of the formͶ݇ ൅ ͳǤ We now construct the number݊ ൌ Ͷሺͷ ൈ ͳ͵ ൈ ͳ͹ ൈڮ ൈ ሻଶ݌ ൅ ͳǤ The primefactors of ݊ are all of the form Ͷ݇ ൅ ͳ and distinct

from ͷǡ ͳ͵ǡ ͳ͹ǡ ǥǡ Ǥ݌ Hence ݌ cannot be the lastsuch primeǤ So there are inϐinitely many suchprimesǤ

Solution to problem IIIǦͳǦSǤ͵ In ᇞܥܤܣǡ the
midpoint of AB is ǡܦ and ܧ is the point of trisection
of ܥܤ closer to Ǥܥ Given that ܥܦܣס ൌ ǡܧܣܤס
determine the magnitude of ǤLetܥܣܤס ܭ be the point of intersection of ܦܥ and ǤȋSeeܧܣ Figure ͳǤȌ Observe that in triangle ܦܣܭסǡܦܭܣ ൌ Ǥܣܦܭס Hence ܭܦ ൌ Ǥܭܣ Let ܨ be themidpoint of Ǥܧܤ Note that ܨܦ is parallel to Ǥܧܣ Intriangle ǡܨܦܥ ܧ is the midpoint of ǡܨܥ and ܭܧ isparallel to Ǥܨܦ Therefore ܭ is the midpoint of ǤHenceܦܥ in triangle ǡܦܥܣ ܭܥ ൌ ܭܦ ൌ Ǥܭܣ It followsthat ܦܣܥס ൌ ܥܣܤס ൌ ͻͲלǤ
Solution to problem IIIǦͳǦSǤͶ Given a ᇞܥܤܣǡ
does there necessarily exist a point ܦ on side ܥܤ
such that ᇞܦܤܣ and ᇞܦܥܣ have equal perimeterǫ
If such a point ܦ existsǡ then we can similarly obtain
points ܧ and ܨ on ܥܣ and ǡܤܣ respectivelyǡ such
that ܧܤ and ܨܥ bisect the perimeter of Ǥܥܤܣ Are
the lines ǡܦܣ ǡܧܤ ܨܥ concurrentǫLet ܥܤ ൌ ܽǡ ܣܥ ൌ ܾ and ܤܣ ൌ ܿǤ Let ܦ be a pointon ǡܥܤ between ܤ and ǡܥ such that ܦܤ ൌ ݔ andܦܥ ൌ Ǥݕ ܦܣ bisects the perimeter of triangle ifܥܤܣ and only if ݔ ൅ ܿ ൌ ݕ ൅ ܾ ൌ ǡݏ whereʹݏ ൌ ܽ ൅ ܾ ൅ ܿǤ Thus ݔ ൌ ݏ െ ܿ and ݕ ൌ ݏ െ ܾǤSince ݏ െ ܿ and ݏ െ ܾ are positive quantities whosesum is ܽǡ it is possible to ϐind a point ܦ on ܥܤ suchthat ܦܤ ൌ ݔ and ܦܥ ൌ Ǥݕ See Figure ʹǤ ȋMorepreciselyǡ ܦ is the point where the exǦcircleopposite vertex ܣ touches ǤȌForܥܤ the second partǡ concurrency of the three linesegments ǡܦܣ ǡܧܤ ܨܥ follows from the converse ofCevaǮs theoremǤ ȋFor we haveǡ in the same wayǣܧܥ ൌ ݏ െ ܽǡ ܣܧ ൌ ݏ െ ܿǡ ܨܣ ൌ ݏ െ ܾǡ ܤܨ ൌ ݏ െ ܽǤ
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Since are positive integers, and
. So is a product of

two integers both of which exceed 1. Therefore
is composite.

Solution to problem III-1-S.2 Show that the
arithmetic progression 1, 5, 9, 13, 17, 21, 25, 29,
33

Another way of expressing this is: Show that there
. It so

happens that the corresponding problem with
instead of is easier to solve. This is

because of the following property: The product of
numbers all of the form is also of that form.

From this it follows: If an odd positive integer is
of the form , then it has at least one prime
factor of that form.

Now consider the primes of the form . They
are: 3, 7, 11, 19, …. Suppose there is a last such
prime, say . Now construct the following number

:

This is of the form , so it has a prime factor
of this form. The prime cannot be any of 3, 7,

11, …, , as is not divisible by these primes. So
we have found a new prime of the form .
Hence there cannot be a ‘last prime’ of this form.

form .

This method of proof does not work for primes of
the form because we cannot make a
statement like this one: “If is of the form ,
then it has at least one prime factor of that form.”
(An easy counterexample to this hypothesis is the
number 21 = 3 × 7.) Some other approach is
needed. This ‘other approach’ is provided by the

do not prove here: The prime factors of a number
of the form + 1 are all of the form .
Examples: 4 × 4 + 1 = 65 = 5 × 13, and
4 × 6 + 1 = 145 = 5 × 29. Taking this to be a
fact, the rest of the proo�is easy.

Suppose that there is a last prime of the form
. We now construct the number

+ 1. The prime
factors of are all of the form and distinct

from 5, 13, 17, …, . Hence cannot be the last

primes.

Solution to problem III-1-S.3 In , the
midpoint of AB is , and is the point of trisection
of closer to . Given that ,
determine the magnitude of .

Let be the point o�intersection of and .
(See Figure 1.) Observe that in triangle ,

. Hence . Let be the
midpoint of . Note that is parallel to . In
triangle , is the midpoint of , and is
parallel to . Therefore is the midpoint of .
Hence in triangle , . It follows
that .ל
Solution to problem III-1-S.4 Given a ,
does there necessarily exist a point on side
such that and have equal perimeter?
If such a point exists, then we can similarly obtain
points and on and , respectively, such
that and bisect the perimeter of . Are
the lines concurrent?

Let , and . Let be a point
on , between and , such that and

. bisects the perimeter of triangle
if and only if , where

. Thus and .
Since and are positive quantities whose
sum is on such
that and . See Figure 2. (More
precisely, is the point where the ex-circle
opposite vertex touches .)

For the second part, concurrency of the three line
segments , , follows from the converse of
Ceva‘s theorem. (For we have, in the same way:

, , , .

3

a(n + 1)2 + b(n + 1) + c

Թ
݄ ݄݄݄ ݄

FIGURE 1.

Since ܽǡ ܾǡ ܿ are positive integersǡ ݊ ൐ ͳ andܽ݊ ൅ ʹܽ ൅ ܾ ൅ ͳ ൐ ͳǤ So ݂ሺ݊ ൅ ͳሻ is a product oftwo integers both of which exceed ͳǤ Therefore݂ሺ݊ ൅ ͳሻ is compositeǤ
Solution to problem IIIǦͳǦSǤʹ Show that the
arithmetic progression ͳǡ ͷǡ ͻǡ ͳ͵ǡ ͳ͹ǡ ʹͳǡ ʹͷǡ ʹͻǡ͵͵ǡ ǥcontains inϔinitely many prime numbersǤAnother way of expressing this isǣ Show that there
are inϔinitely many primes of the form Ͷ݇ ൅ ͳǤ It sohappens that the corresponding problem withͶ݇ െ ͳ instead of Ͷ݇ ൅ ͳ is easier to solveǤ This isbecause of the following propertyǣ The product of
numbers all of the form Ͷ݇ ൅ ͳ is also of that formǤFrom this it followsǣ If an odd positive integer ݊ is
of the form Ͷ݇ െ ͳǡ then it has at least one prime
factor of that formǤNow consider the primes of the form Ͷ݇ െ ͳǤ Theyareǣ ͵ǡ ͹ǡ ͳͳǡ ͳͻǡ ǥǤ Suppose there is a last suchprimeǡ say Ǥ݌ Now construct the following number݊ǣ ݊ ൌ Ͷሺ͵ ൈ ͹ ൈ ͳͳ ൈڮ ൈ ሻ݌ െ ͳǤThis is of the form Ͷ݇ െ ͳǡ so it has a prime factorݍ of this formǤ The prime ݍ cannot be any of ͵ǡ ͹ǡͳͳǡ ǥǡ ǡ݌ as ݊ is not divisible by these primesǤ Sowe have found a new prime of the form Ͷ݇ െ ͳǤHence there cannot be a Ǯlast primeǯ of this formǤTherefore there are inϐinitely many primes of theform Ͷ݇ െ ͳǤThis method of proof does not work for primes ofthe form Ͷ݇ ൅ ͳ because we cannot make astatement like this oneǣ ǮIf ݊ is of the form Ͷ݇ ൅ ͳǡthen it has at least one prime factor of that formǤǯȋAn easy counterexample to this hypothesis is thenumber ʹͳ ൌ ͵ ൈ ͹ǤȌ Some other approach isneededǤ This Ǯother approachǯ is provided by thefollowing atǦϐirstǦsightǦsurprising fact which wedo not prove hereǣ The prime factors of a number
of the form Ͷ݉ଶ ൅ ͳ are all of the form Ͷ݇ ൅ ͳǤExamplesǣ Ͷ ൈ Ͷଶ ൅ ͳ ൌ ͸ͷ ൌ ͷ ൈ ͳ͵ǡ andͶ ൈ ͸ଶ ൅ ͳ ൌ ͳͶͷ ൌ ͷ ൈ ʹͻǤ Taking this to be afactǡ the rest of the proof is easyǤSuppose that there is a last prime ݌ of the formͶ݇ ൅ ͳǤ We now construct the number݊ ൌ Ͷሺͷ ൈ ͳ͵ ൈ ͳ͹ ൈڮ ൈ ሻଶ݌ ൅ ͳǤ The primefactors of ݊ are all of the form Ͷ݇ ൅ ͳ and distinct

from ͷǡ ͳ͵ǡ ͳ͹ǡ ǥǡ Ǥ݌ Hence ݌ cannot be the lastsuch primeǤ So there are inϐinitely many suchprimesǤ

Solution to problem IIIǦͳǦSǤ͵ In ᇞܥܤܣǡ the
midpoint of AB is ǡܦ and ܧ is the point of trisection
of ܥܤ closer to Ǥܥ Given that ܥܦܣס ൌ ǡܧܣܤס
determine the magnitude of ǤLetܥܣܤס ܭ be the point of intersection of ܦܥ and ǤȋSeeܧܣ Figure ͳǤȌ Observe that in triangle ܦܣܭסǡܦܭܣ ൌ Ǥܣܦܭס Hence ܭܦ ൌ Ǥܭܣ Let ܨ be themidpoint of Ǥܧܤ Note that ܨܦ is parallel to Ǥܧܣ Intriangle ǡܨܦܥ ܧ is the midpoint of ǡܨܥ and ܭܧ isparallel to Ǥܨܦ Therefore ܭ is the midpoint of ǤHenceܦܥ in triangle ǡܦܥܣ ܭܥ ൌ ܭܦ ൌ Ǥܭܣ It followsthat ܦܣܥס ൌ ܥܣܤס ൌ ͻͲלǤ
Solution to problem IIIǦͳǦSǤͶ Given a ᇞܥܤܣǡ
does there necessarily exist a point ܦ on side ܥܤ
such that ᇞܦܤܣ and ᇞܦܥܣ have equal perimeterǫ
If such a point ܦ existsǡ then we can similarly obtain
points ܧ and ܨ on ܥܣ and ǡܤܣ respectivelyǡ such
that ܧܤ and ܨܥ bisect the perimeter of Ǥܥܤܣ Are
the lines ǡܦܣ ǡܧܤ ܨܥ concurrentǫLet ܥܤ ൌ ܽǡ ܣܥ ൌ ܾ and ܤܣ ൌ ܿǤ Let ܦ be a pointon ǡܥܤ between ܤ and ǡܥ such that ܦܤ ൌ ݔ andܦܥ ൌ Ǥݕ ܦܣ bisects the perimeter of triangle ifܥܤܣ and only if ݔ ൅ ܿ ൌ ݕ ൅ ܾ ൌ ǡݏ whereʹݏ ൌ ܽ ൅ ܾ ൅ ܿǤ Thus ݔ ൌ ݏ െ ܿ and ݕ ൌ ݏ െ ܾǤSince ݏ െ ܿ and ݏ െ ܾ are positive quantities whosesum is ܽǡ it is possible to ϐind a point ܦ on ܥܤ suchthat ܦܤ ൌ ݔ and ܦܥ ൌ Ǥݕ See Figure ʹǤ ȋMorepreciselyǡ ܦ is the point where the exǦcircleopposite vertex ܣ touches ǤȌForܥܤ the second partǡ concurrency of the three linesegments ǡܦܣ ǡܧܤ ܨܥ follows from the converse ofCevaǮs theoremǤ ȋFor we haveǡ in the same wayǣܧܥ ൌ ݏ െ ܽǡ ܣܧ ൌ ݏ െ ܿǡ ܨܣ ൌ ݏ െ ܾǡ ܤܨ ൌ ݏ െ ܽǤ
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The converse of Ceva's theorem states that if

ί cǡ AF ε s ί bǡ FB ε s ί aǤ

are points on , , such that the
above equality holds, then , , concur.
Hence the claim.)

Solution to problem III-1-S.5 Let and
Ǥ Is 4 + 5 a prime numberǫ

Observe that 4 divides . Let . Now

4 + 5 = 4(4 ) + (5 )

is of the form . But:

Put and . Since both factors
exceed 1, 4 + 5 is composite.
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In 1948, a paper was submitted to a 
Bell Labs technical journal, in which 
the author proposed a new theoretical 

framework to analyse problems in 
communication. Suggesting that it be 
rejected for publication, the reviewer of 
the paper said it was “poorly motivated 
and excessively abstract”, and went on 
to say, “it is unclear for what practical 
problem it might be relevant … the author 
mentions computing machines – I guess 
one could connect such machines, but a 
recent IBM memo stated that a dozen or 
so such machines will be sufficient for all 
the computing that we’ll ever need in the foreseeable future, so there 
won’t be a whole lot of connecting going on” [1]. While this clearly 
mistaken reviewer remains anonymous, the author of the submitted 
paper entitled “A Mathematical Theory of Communication”, a relatively 
young mathematician and engineer named Claude Shannon, went 
on to become one of the founding pioneers of the new field called 
information theory. In fact, Shannon’s 1948 paper – published 
around the same time that the transistor was invented – essentially 
created the field of information theory, which has deeply influenced 
the development of engineering and computer science. Among 
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numerous other ideas, Shannon is credited with 
conceptualizing the digital computer and circuit 
design theory, as well as being the first to use the 
word bit as a contraction of the phrase ‘binary 
digit’, in the same 1948 paper.  

The story of Shannon’s work, as well as a wider 
look at the evolution of the idea of information, 
appears in a recent book called The Information: 
A History, a Theory, a Flood. The book is by the 
well-known science writer James Gleick, who 
has written several bestsellers. Published in 
1987, his first book Chaos: Making a New Science 
described the development of chaos theory, 
the mathematical study of sensitive dynamical 
systems, and was important in helping popularize 
chaos theory and fractals. Among other things, 
the book spread greater awareness of the phrase 
“the butterfly effect”, making it a cultural meme 
that has since appeared in movies and pop 
culture generally. Chaos won a Pulitzer Prize in 
1988, and has sold millions of copies since then. 
Among Gleick’s other widely acclaimed books are 
two biographies, Genius: The Life and Science of 
Richard Feynman, and Isaac Newton, both finalists 
for the Pulitzer Prize as well. 

Unlike a more straightforward historical 
biography of a person, The Information describes 
the evolution of an idea, bringing together strands 
of history and culture to show how a crucial new 
construct emerged in our understanding of the 
world. This new construct was defined, measured 
and articulated as ‘information’. It now appears 
to be everywhere we look, and this ubiquity is 
perhaps the reason why the idea of information 
was traditionally overlooked. After all, anything 
that is considered self-evident and ‘obvious’ 
usually hides a deeper and richer understanding 
of the world; as the mathematician E. T. Bell 
put it, “obvious is the most dangerous word in 
mathematics” [2]. 

On the face of it, you might wonder what a 
book describing the history of the concept of 
information has to do with mathematics. In fact, 
the theoretical foundations that help to describe 
and measure information are mathematical in 
nature. When Shannon thought about transmitting 
information, he did not consider the meaning 

or sense of the message; as he put it, “semantic 
aspects of communication are irrelevant” to the 
engineering problem, although he conceded 
that “frequently the messages have meaning” 
[3]. Instead, he formulated information as a 
mathematical measure of the number of possible 
states that a message could take, using symbols 
from a finite underlying alphabet. In this sense 
information is directly related to the idea of 
entropy, and can be measured in a similar 
way. Many of the other concepts described in 
this book also have a solid mathematical basis, 
and the whole history of the conceptualization 
of information shows us the ways in which 
mathematics can be applied to all sorts of 
questions about the world. Gleick is at ease 
writing and describing these mathematical ideas, 
and as a textured background to these ideas he 
provides a narrative that takes in a wide sweep of 
history, linking the technical to the cultural. 

The book begins with the description of the 
talking drums in sub-Saharan Africa that are 
used to transmit complex messages across long 
distances, being sent from village to village by 
relay. The language of the drum involves sound 
combinations that have a few different dimensions 
– tones as well as vowels and consonants - which 
are used to encode detailed messages. This sets 
the stage for the investigation of the ‘amount’ of 
a message that can be reliably transmitted using 
relatively simple alphabets; in fact, the example 
shows that the ‘size’ of a message is not always 
directly correlated with the amount of information 
it carries. Gleick then moves on to investigate the 
early attempts at creating long distance telegraph 
systems, and then telephones, bringing out 
curious stories of the many people and inventions 
that flourished in the early years of each 
invention. There are the Chappe brothers in 18th 
century France, for example, who devised an early 
form of telegraph using a network of tall towers 
with men communicating between them using 
flags. Even the famous mathematician C.F. Gauss, 
together with the physicist Weber, came up with 
a scheme involving electric currents that travelled 
through wires to deflect small needles left or right. 
We clearly see two separate and interconnected 
problems emerging: creating a useful language or 
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alphabet of the message, and inventing effective 
communication technology itself.   

Gleick then discusses how language, when moving 
from the oral to the written, brought with it 
questions of representation and standardization. 
How exactly were the letters in the alphabet to 
be arranged to spell a given word: for example, 
would it be wordes or words, colume or column? 
This leads to the story of how the Oxford English 
Dictionary was originally compiled, and to its 
subsequent development. Moving from the 
written to the published word to transmitting 
them through wires, the book then considers how 
language was encoded in electronic switches, 
bringing logic and language together in the early 
computers. Again, through this journey we meet 
several people involved in these ideas through 
history: Charles Babbage, Ada Byron, and their 
early mechanical computer called the ‘analytical 
engine’; Augustus De Morgan, George Boole and 
their symbolic ‘algebra of logic’; and of course Alan 
Turing, with his formalization of the meanings of 
ideas such as ‘algorithm’ or ‘computation’.

From here the journey to Shannon’s 1948 paper 
was not self-evident. Gleick describes Shannon’s 
early ideas, and the people he worked with. Some 
were more responsive to his ideas than others. 
For example, Turing and Shannon often had lunch 
together and discussed their work, and in an 
interview given in 1982, Shannon said that Turing 
“didn’t always believe these . . . my ideas . . . he 
didn’t believe they were in the right direction” 
[4]. Once the idea of information emerged, it 
spread quickly to various disciplines to different 
levels of success. In the 1950s, as the structure of 
DNA was discovered, the biologist Francis Crick 
described the copying of a sequence of nucleic 
acids as a transfer of information. At the time, 
this was meant as a metaphoric description, 
but soon biologists and geneticists would talk 
of information, alphabets, and the transcription 
of codes in a literal sense. Information theory 
permeated economics, philosophy and physics, 
while it also remained significant and useful in the 
growing computer industry.

Gleick eventually argues that the idea of 
information is more universally fundamental than 

we might think. In fact, some theoretical physicists 
now suggest that space and time are themselves 
simply constructed by the exchange of discrete 
bits of information. In this view, information is 
the essence out of which everything else in the 
physical universe arises; or, as the physicist John 
Archibald Wheeler put it, “all things physical are 
information-theoretic in origin” [5]. 

The book doesn’t move linearly through history, 
but instead weaves between different times and 
different discoveries to tease out the threads of 
the various insights that led to the concept of 
information. In hindsight, it might seem obvious 
to us now that the idea of information would 
emerge in certain historical contexts, and we can 
now easily see and name these ideas in those 
contexts; but it would have taken a great leap of 
understanding at the time to see how all the pieces 
fit together. By giving us this non-linear narrative, 
Gleick delightfully shows not just that our human 
scientific understanding of the world meanders 
in several different directions with no evident 
direction of ‘progress’, but also that each human 
idea does not constructively build on the ones that 
came before. We almost get the sense that there 
are several plot lines evolving in what is a large 
detective story, and Gleick brings them together in 
a satisfying way.   

In all of the discussion on information, however, 
Gleick sidesteps issues of the control of access 
to information, steering clear of any political 
analysis or discussion of how information and 
state power are closely related. Any history of 
information would surely have to acknowledge 
these relations, and it would have been interesting 
if the book considered this. Still, he does mention 
Wikipedia and the ways in which entries can be 
silenced or censored by vandals and deletionists, 
as the community of editors struggle to reach an 
elusive compromise. In fact, this struggle is not 
just between opposing points of view, but also 
with our management of the sheer quantity of 
information available to us now. To Gleick, the 
bold Wikipedia project is one attempt to deal 
constructively with the new flood of information 
we are continually exposed to. One factor in 
this flood is the curious fact that it apparently 
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takes more energy to actually delete electronic 
information than to simply store it, in an entropic 
sense. Why delete or forget anything, in that 
case? However, as we electronically preserve 
more information now than ever before, this 
‘information overload’ makes it difficult for 
us to decide on the value of any given piece 
of knowledge. The more information we have 
access to, the harder it is to filter out irrelevant 
noise to find what we want, and then understand 
what it means. The challenge of making sense 
of it all is more relevant than ever, and Gleick is 
optimistic about our collective ability to manage 
the challenges and even to create meaning in what 
could become a bewildering jumble. 

Although many of the concepts in the book can be 
quite complicated, Gleick gives us a very readable 
account, going into details only as much as is 
necessary for us to get a sense of the mathematics 
and engineering involved. Even these are not 
presented in an abstract way, but are woven 
into the historical account and help to move the 
narrative forward. High-school students might 

find some of the book challenging, but it will 
probably help them to see the world in a new 
way, making connections that they had not known 
before. It can show them mathematics in a new 
light, being applied to very practical problems 
at the centre of modern communications and 
technology. Teachers of mathematics would 
hopefully find the book fascinating and would be 
able to appreciate it at a deeper level. There are 
a great many mathematical ideas that you might 
be surprised to find in a book about information: 
randomness and normality of numbers, Gödel 
and incompleteness, quantum mechanics and 
uncertainty – but the links that Gleick fashions 
between them is intellectually satisfying. In 
addition, a reader who has already heard a 
little bit about some of the people in this book 
– Babbage, Morse, Turing, and others – would 
find that this adds to the value of the unusual 
perspective that Gleick brings. The Information, 
perhaps the first natural history of information 
ever attempted, lays out for us the long course 
we’ve followed to get to where we are today.
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Appendix: Bits and Bytes and Shannon’s concept of entropy

Consider an alphabet of symbols, each of which 
may be used to send a message, or transmission. 
Each symbol i used in the transmission could be 
selected with probability pi and this probability 
could depend both on the symbol selected and 
its location within the transmission.  Shannon 
proposed that the amount of information carried 
by a transmission is given by

Here K is a positive constant and the summation 
is across the symbols of the alphabet. Why 
did he decide to use this measure? To create a 
way to measure the amount of information a 
transmission contains, Shannon set out three 
reasonable conditions that any such measure 
would have to satisfy. (See reference [1].) He then 
proved mathematically that there is only one 
possible way to define the measure, namely the 
one shown above.

APPENDIX: BITS AND BYTES AND SHANNON’S CONCEPT OF ENTROPY 

Consider an alphabet of symbols, each of which may be used to send a message, or 
transmission. Each symbol   used in the transmission could be selected with probability    
and this probability could depend both on the symbol selected and its location within the 
transmission.  Shannon proposed that the amount of information carried by a transmission 
is given by 

     ∑         
 

 

Here   is a positive constant and the summation is across the symbols of the alphabet. Why 
did he decide to use this measure? To create a way to measure the amount of information a 
transmission contains, Shannon set out three reasonable conditions that any such measure 
would have to satisfy. (See reference [1].) He then proved mathematically that there is only 
one possible way to define the measure, namely the one shown above. 

Choosing different bases for the logarithm naturally gives us different choices of units to 
measure information. In his 1948 paper, Shannon suggested that using a base of   would be 
convenient for electronic devices, and that the units in this case could be called binary digits, 
or simply bits. He noted that this name was suggested by the mathematician J. W. Tukey, a 
colleague at Bell Labs. The name certainly has stuck! Note that as an electronic switch has 
two stable positions, ON or OFF, it carries   bit of information.  

How are the probabilities    for the symbols in the alphabet found? For human languages, 
their values can be empirically estimated. Shannon gave the following example: the English 
language can be thought to contain an alphabet of 27 symbols: the usual 26 letters, plus a 
space. In everyday written English communications, not every symbol is equally probable, 
and their successive choices are not independent either. If each symbol is selected randomly 
with probability  

   and each choice is made independently, then a transmission might look 
like this: 

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMK ZAACIBZLHJQD. 

Instead, if we were to use the naturally occurring frequencies of the letters in the English 
language, and also select each letter with a probability that depends on the previous two 
letters (using the naturally occurring frequencies of the various three-letter combinations) 
then a transmission would look like this: 

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF 
THE REPTAGIN IS REGOACTIONA OF CRE. 

It's clear that the resemblance to a ‘meaningful’ English sentence has increased, though it is 
still gibberish! 
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Choosing different bases for the logarithm 
naturally gives us different choices of units 
to measure information. In his 1948 paper, 
Shannon suggested that using a base of 2 would 
be convenient for electronic devices, and that the 
units in this case could be called binary digits, 
or simply bits. He noted that this name was 
suggested by the mathematician J. W. Tukey, a 
colleague at Bell Labs. The name certainly has 
stuck! Note that as an electronic switch has two 
stable positions, ON or OFF, it carries 1 bit of 
information. 

How are the probabilities pi for the symbols in 
the alphabet found? For human languages, their 
values can be empirically estimated. Shannon gave 
the following example: the English language can 
be thought to contain an alphabet of 27 symbols: 
the usual 26 letters, plus a space. In everyday 
written English communications, not every 
symbol is equally probable, and their successive 
choices are not independent either. If each symbol 
is selected randomly with probability  and each 
choice is made independently, then a transmission 
might look like this:

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ 
FFJEYVKCQSGHYD QPAAMK ZAACIBZLHJQD.

Instead, if we were to use the naturally occurring 
frequencies of the letters in the English language, 
and also select each letter with a probability that 
depends on the previous two letters (using the 
naturally occurring frequencies of the various 
three-letter combinations) then a transmission 
would look like this:

IN NO IST LAT WHEY CRATICT FROURE BIRS 
GROCID PONDENOME OF DEMONSTURES OF THE 
REPTAGIN IS REGOACTIONA OF CRE.

It's clear that the resemblance to a ‘meaningful’ 
English sentence has increased, though it is still 
gibberish!

(Some readers may be reminded of the following 
lines which occur in Lewis Caroll’s poem 
Jabberwocky which is part of his ‘nonsense verse’ 
work:

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

The lines seem to be telling us something, 
though the words do not belong to any English 
dictionary!)

At the time of Shannon’s 1948 paper, the 
formula for the measure of information H was 
already well-known in the field of statistical 
mechanics. In this context, the formula describes 
the “entropy of the system”. Roughly speaking, 
entropy is a measure of the ‘level of disorder’ in 
a thermodynamic system, a way of measuring 
how far away the system is from equilibrium. 
If a thermodynamic system can have several 
microstates, each occurring with a possibly 
different probability pi then the entropy of the 
system is defined to be

s = — kB         pi log pi
⎲
⎳i

Here kB is called the Boltzmann constant, and 
the summation is across all the microstates. So 
Shannon had created a measure of information 
which is an extension of the thermodynamic 
concept of entropy. In this sense, information can 
be thought of as a form of entropy.

For interested readers, [3] is the original 
landmark paper where Shannon introduces these 
notions.

References
[1]	 http://en.wikipedia.org/wiki/Entropy_(information_theory)#Characterization

[2]	 http://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication

[3]	 http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf 



A VISUAL

 D
IV

IS
IO

N
 



 DIVISION 
It is well known that division and subtraction are generally found to be more difficult to learn by 

children, as compared with addition and multiplication. Particularly in the case of division, 

children have difficulty both in identifying the situations requiring division and the complex 

formal procedure involved in the long division process. There is also the role played by zero as a 

place value holder in the quotient. Given that these are the three main difficulties, teachers need 

to slow down and exercise care while teaching the division concept. I have often seen teachers 

not making use of the place values of numbers while explaining division procedure. Unless the 

place value is emphasized, the logic of the placement of quotient in the right place cannot 

possibly be understood.

Do plenty of warm-up activities involving these two division contexts before introducing division: 

a) Division as equal distribution; 

b) Division as repeated subtraction. 

(Note: Division as a rate or reducing scale factor is taught only at the upper primary level.) 

Keywords: Division, repeated subtraction, equal distribution, equal groups, sharing, multiplication, dividend, quotient, 

remainder, divisor



Ÿ Draw two line segments parallel to each other. Ask a certain number of children to distribute themselves 

equally along the two segments (but first ensure that the number of children is even). Each opposing pair 

can shake hands to verify the one to one correspondence. 

Ÿ Draw 3 large circles on the ground. Ask a certain number of children (but first ensure that the number of 

the children is a multiple of 3) to distribute themselves equally between the three circles. Let them count 

out their number for verification.

Ÿ Draw a large square on the ground. Ask a certain number of children (but first ensure that the number of 

the children is a multiple of 4) to distribute themselves equally on the four sides of the square. 

It is important for the teacher to let the children figure out how to do the distribution on their own. They may 

blunder at the start, but they will eventually come out with effective ways of solving the problem. 

ACTIVITY
ONE
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Distribution into equal groups and 

internalising division contexts 

03

Let four children share the seeds or marbles amongst themselves equally. 

The seeds or marbles can also be placed in paper plates or bowls. 

Let another group of children work with straws and share out straws equally amongst themselves. 

Let yet another group of children arrange square pieces in the required number of rows with the same 

number of pieces in each row. 

Activities 1 and 2 should be done over several days with varied materials and in different contexts to provide 

children with a firm grounding in the division experience. 

ACTIVITY
TWO

Distributing objects into equal groups and 

internalising division contexts 
Materials required: Square pieces, straws and rubber bands, coloured buttons. 

Peg board and pegs or graph board and seeds 



Let the children use pairing and count the number 

of pairs and record the information as shown in 

the picture. 

Let them do repeated subtraction and count the 

number of times subtraction has taken place, and 

let them then record the information. 

It is important that they record the result in both 

forms, as a grouping and as a division fact, till they 

internalize the relationship between grouping and 

division. The same holds if one is doing it through 

repeated subtraction. 

ACTIVITY
FOUR

Introduction to the division symbol 

Materials required: Seeds or square pieces 
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Give a child, say, 20 beads. Ask him to remove 2 beads at a time from the pile. Ask him to record the number 

of times he removes 2 beads. At the end let him record the statement as follows. 

"20 seeds, 2 seeds removed 10 times." 

Repeat this activity with other numbers, making sure that there will be no remainder left in the initial stage. 

Often teachers introduce the symbol for division or the formal way of writing division too soon. While the 

child is still struggling to understand the division concept and internalise it, he or she is confronted with new 

symbols and complex recording procedures. It is best to give children exposure to activities involving division 

for at least 10 days before we introduce the symbol. 

ACTIVITY
THREE

Division as repeated subtraction 

Materials required: Beads, straws 



Arrange square pieces in an array form as shown in the picture for activity 5. 

Help children to record the division fact by looking at it one way; that is, as 12 ÷ 4 = 3. 

Now turn the array the other way round to record the other division fact arising from the same situation; that 

is, 12 ÷ 3 = 4. 

ACTIVITY
SIX

To show that every division fact gives rise to 

another division fact 
Materials required: Square pieces 

05

It is quite possible that children may intuitively use multiplication facts to arrive at the answers for division 

problems. In fact, children who have internalised multiplication concepts quite thoroughly may straight away 

use multiplication facts by converting the division problem into complementary multiplication problem. 

Example: 12 ÷ 4 may be converted to: "4 times which number equals 12?" 

However, not all children may see the connection. Hence it becomes necessary for the teacher to lead the 

children into this discovery by asking directed questions. 

How many square pieces did you have at the start? 12. Into how many rows are you going to distribute them? 

4. How many pieces have you placed in each row? 3 pieces. How do we state this as a division fact? 

12 ÷ 4 = 3.

Can you describe this arrangement (as shown in the picture) as a multiplication situation? 

3 x 4 = 12.
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ACTIVITY
FIVE

Helping children to see the connection between 
multiplication and division 
Materials required: Square pieces, seeds. Peg boards with pegs 



Take any problem, say: 16 ÷ 8. Take 16 square pieces and distribute equally to 8 people. Let children see that 

each person gets 2 pieces. Now simultaneously show the recording procedure, emphasizing the fact that the 

total number being shared (namely, 16) is written in the centre, the number of people among whom it is 

shared is written on the left, and the number each one gets is written on top. Use place value headings on the 

dividend. It is best to get children into the practice of writing the quotient on top, synchronizing it with the 

correct place value. This reduces the scope for errors, and zero as a place value holder becomes evident. 

ACTIVITY
EIGHT

To show the division procedure for one step division problems 

Materials required: Square pieces 
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Create many visual word problems or give plenty of context situations which help children understand the 

division concept. 

ACTIVITY
SEVEN

To show division using plenty of visuals and 

creating context situations 
Materials required: Square pieces 
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12 ÷ 0 = ?

This is best explained through repeated subtraction. 

Ask the question: "How many times can zero be subtracted from 12 to get zero at the end"? 

No matter how many times we subtract zero from 12, we will never get a zero as the answer! It goes on 

indefinitely. So the division cannot be done at all. 

Division of zero by a number: 

0 ÷ 8 = ?

While teaching multiplication facts through the flow technique, we had established that any number 

multiplied by 0 yields 0. We could now use this fact to show that the answer would be 0. 

Note on terminology: It is not necessary to introduce all the words – 'dividend', 'divisor', 'quotient', 'remainder' – 

at the lower primary level. 'Remainder' alone will make sense, as it is a commonly used word in English. 

Instead, we can refer to these numbers as: How many (objects or sweets) need to be distributed? To how 

many people? How many will each get? 

ACTIVITY
TEN Division of zero by a number, and division by zero

ACTIVITY
NINE Division by ten

Show several problems with division by 10. Make a table 

as shown, showing the division facts along with 

quotient and remainder. Let children notice that in 

division by 10, the number in the units place becomes 

the remainder, and the 'rest' of the number becomes the 

quotient. 



08

Introduction to division of a double digit number by a single digit number is best done through place value 

material. In the first stage we introduce problems which do not require exchange from tens to units. 

Example: "Share 48 rupees amongst 4 people." 

As shown in the picture, we use tens and units material to show 48. We start with tens (this is an important 

point to note as in all the other arithmetical operations we start from right to left, and it is in the division 

operation alone that we move from left to right) and ask the question how many tens (at each point, read the 

number with its place value to draw the child's attention to it) can we share out equally amongst 4 people? 

Each one gets 1 ten (emphasize again the place value). This is recorded in the division problem as 1 ten in the 

tens place over the 4. It is important to emphasise the place value all the way through. In my school days we 

used to write the quotient on the right hand side of the dividend. But this way one does not see the 

correspondence between the digits of the quotient and the dividend. Placement of zeroes as place holders is 

also not clear in this form of writing. 

Now as we subtract the 4 tens given away, we move to the second step. Many children take time to learn a 

two-step division problem; hence we must go very slowly, articulating every action. I usually like to use a 

downward arrow to indicate "bringing down the next number." This focuses the child's attention on it, makes 

him understand what is happening, and serves as a visual aid. We now take down 8 units and each gets 2 

units which is then recorded on top of 8 as a quotient. After subtraction there are no units left. 
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ACTIVITY
ELEVEN

Division of a double digit number by a single digit 

number (without any exchange and remainder) 
Materials required: Place value Kit.
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Here again division of a double digit number by a single digit number involving exchange is best done through 

place value material. 

Example: Share 64 rupees amongst 4 people. 

As shown in the picture, we use tens and units material to show 64 and make 4 groups. Since we need to share 

6 tens among 4 people we ask the question: "How many tens can we share out equally among 4 people?" So 

we first distribute 4 of the 6 tens to the 4 people. (Sometimes children write a lower multiple than what is 

possible under the dividend and end up with a remainder which is larger than the divisor. Point out to them 

that when that happens they could have taken a higher multiple). Each gets 1 ten. This is recorded in the 

division problem as 1 ten in the tens place over the 6. Now when we subtract what is given away to the 4 

people, we are left with 2 tens. We now take down 4 units. We convert the 2 tens into 20 units. The number 

now reads as 24 units. 24 units shared amongst 4 people is 6 units for each person. So we record 6 units over 

the units place. 

Extension: Problems involving remainder should also be taken up and explained using materials in a similar way. 

ACTIVITY
TWELVE

Division of a double digit number by a single digit 

number (with exchange) and with or without remainder 
Materials required: Place value Kit.
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Share 612 rupees amongst 3 people: 

612 ÷ 3

Let us use place value materials to demonstrate this as 

shown in the picture. 

As shown in the picture we use hundreds, tens and 

units material, or fake money, to show 612. Since we 

need to share 6 hundreds among 3 people we ask the 

question: "How many hundreds can we share out 

equally among 3 people?" So we first distribute 6 

hundreds to the 3 people, and each one gets 2 

hundreds. This is recorded in the division problem as 2 

hundreds in the hundreds place over the 6. Now as 

we subtract what is given away to the 3 people we are 

left with 0 hundreds. We now take down 1 ten. We 

cannot share 1 ten as it is (without exchanging) 

amongst 3 people. Since no tens are being given out 

to the three people, we write 0 tens in the tens place 

of the quotient. Now we bring down the 2 units. We 

convert the 1 ten into 10 units. The number now 

reads as 12 units. 12 units shared amongst 3 people is 

4 units for each person. Now we record 4 units over 

the units place. 

Extension: Different problems which give rise to zero 

in the quotient, for example: 408 ÷ 4, 400 ÷ 5, 

600 ÷ 5 can be explained using the same kind of 

reasoning. 

While discussing problems which give rise to a 

remainder we need to draw the child's attention to the 

fact that the remainder will always be less than the 

divisor. 

Verification: Show the children the method for 

verifying that their answer is right by multiplying the 

quotient with the divisor and adding the remainder to 

the product so obtained. It must match with the 

dividend. 

ACTIVITY
THIRTEEN

Division of a three digit number by a single digit 

number (with zero in the quotient) 
Materials required: Place value Kit.
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It is best to postpone teaching this to class 5. Also by this point the child does not (indeed, should not) need 

to take recourse to the use of concrete materials. Terminology like 'dividend', 'divisor', 'quotient' and 'remainder' 

can be introduced at this level. 

Children face a lot of difficulty in understanding the procedure of division by a double digit number, and many 

errors happen in this area. Working with multiples of a double digit number is difficult as children do not 

know the multiplication facts of these numbers. In the initial stages let them construct the multiplication table 

for the required number and use the facts in solving the problem. At a later point one can help them to use 

estimation methods to figure out the possible quotient. Estimation would involve looking at the numerals in 

the highest place value both of the quotient and the divisor. For example, 785 ÷ 24 requires the child to look 

at 7 hundred and 2 tens which will result in 3 tens (7 hundred divided by 2 tens). Also, let children see that 

estimation does not always give the exact quotient but it helps in getting close to the possible quotient; it 

could be at times 1 less than that or 1 more than that. 

The games suggested here involve the usage of all four operations. They can be modified to reinforce divisions 

alone or multiplications and divisions. 

ACTIVITY
FOURTEEN

Division of a double digit number by 

a double digit number 

GAME 1 CLIMB THE LADDER 

Aim: To give practice in using 4 operations with small numbers for two players. 

Equipment: Two dice, game board with two ladders (numbers 1 to 10 written on each rung), two counters. 

The first player rolls the two dice (let us say 5 and 6 arise), using those numbers and any operation in any 

combination, he must try to make an answer of 1. 

He might arrange them as 6 – 5 = 1. The player can then place his counter on the first rung of the ladder. 

When a player cannot make the required number, he loses his turn and stays where he is on the ladder. 

The second player now rolls the dice in turn to move his counter on the ladder. 

Extension: The game can be extended to 20 rungs on the ladder. We can also have 3 dice to bring in 2 

operations at a time. 
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Aim: To give practice in using 4 operations with slightly larger numbers. 

Equipment: 52 number cards 

Numbers 1 to 9 (3 of each), 10 to 18 (2 of each), 19 to 25 (1 of each) 

Also make 30 sign cards (+, –, ×, ÷ ) 

No. of players: Two to four 

Shuffle the number cards and deal five cards to each player. The object of the game is to arrange these five 

cards, together with an equals to sign and three sign cards of their choice, to form an equation. Children 

should be told that × and ÷ get priority over + and –. 

A player who manages to make an equation with the original cards scores 10 points. If a player cannot make 

an equation with his set of 5 number cards and exchanges 1 number card for a new one, then he loses 2 

points for every card exchanged. 

GAME 2 EQUATIONS 

GAME 3 DOMINOES 

Aim: To provide practice in simple multiplication and division at speed. 

Equipment: Make a set of 32 dominoes. Each domino is divided by a line into a 'left side' and a 'right side'. The 

first domino has "Start" written on the left side and a simple problem on the right side (ex. 9 × 3, 24 ÷ 6 ). On 

each of the remaining dominoes, the answer for the previous domino's problem is written on the left side, and 

another problem is given on the right side (the answer for which is on the left side of the next domino, and so 

on). The last domino has "End" written on the right side. 

This game is self-correcting in nature. If a single child plays it alone, he will have dominoes left over if he makes 

a mistake. If several are playing together, others can point out the mistakes. 



One	wonders	why	a	field	as	basic	as	Education	–	a	field	at	once	crucial	and	

vitally	important	in	every	possible	way	—	receives	such	little	education	in	

the	public	domain.	In	name	of	course	it	does.	New	schemes	get	proposed,	

new	critiques	are	offered,	and	the	cycle	continues.	Yet	there	is	barely	a	dent	

made	in	the	hard	shell	of	the	problem.	Are	we	as	a	society	at	all	interested	

in	doing	 something	about	 it?	 It	would	appear	not.	One	comes	across	any	

number	of	armchair	critics	who	will	tell	you	exactly	what	is	wrong	with	the	

education	system,	and	who	will	not	do	a	thing	about	it.

A	 decade	 the	 former	 Government	 initiated	 a	 series	 of	 actions	 that	

culminated	in	the	National	Curriculum	Framework	2005.	Included	in	it	was	

a	superbly	crafted	(and	freely	available)	document	referred	to	widely	as	the	

“Position	Paper	in	Teaching	of	Mathematics”.	It	contains	a	wealth	of	wisdom	

on	 the	 teaching	of	mathematics,	 in	matters	 ranging	 from	curriculum	and	

teaching	 style	 to	 assessment	 and	 examinations.	 I	 wonder	 why	 we	 have	

allowed	 so	 important	 and	 valuable	 a	 document	 to	 simply	 go	 waste	 and	

gather	dust	on	shelves.	(Note:	This	metaphor	will	now	have	to	be	adapted	

to	modern	 times!	 So	 I	 should	 say	 “gather	 e-dust	 on	 e-shelves	 hidden	 in	

some	cloud!”)	Are	we	now	going	to	take	steps	to	produce	version	2.0	of	this	

document?	It	would	be	a	tragic	waste	of	good	human	energy	of	we	do	so.	In	

fact,	such	a	step	is	only	a	strategy	for	postponing	action.	So	let	us	pray	that	

this	will	not	happen.

One	wonders	why	we	cannot	simply	start	at	our	own	individual	 levels	—	

teaching	 and	 learning	 beautiful	 mathematics	 which	 is	 available	 in	 such	

abundance	everywhere,	especially	in	the	modern	world.	Is	it	that	we	are	all	

waiting	 for	 big	 organizational	 initiatives?	 And	 if	 so,	 why?	 The	 following	

quote	from	J	Krishnamurti	is	of	relevance.	“In	a	world	of	vast	organizations,	

vast	mobilizations	 of	 people,	mass	movements,	we	 are	 afraid	 to	 act	 on	 a	

small	scale;	we	are	afraid	to	be	little	people	clearing	up	our	own	patch.	We	

say	to	ourselves,	‘What	can	I	personally	do?	I	must	join	a	mass	movement	in	

order	 to	reform.’	On	 the	contrary,	 real	 revolution	 takes	place	not	 through	

mass	movement	 but	 through	 the	 inward	 revolution	 of	 relationship—that	

alone	is	real	reformation,	a	radical,	continuous	revolution.	We	are	afraid	to	

begin	on	a	small	scale.	Because	the	problem	is	so	vast,	we	think	we	must	

meet	it	with	large	numbers	of	people,	with	a	great	organization,	with	mass	

movements.	Surely,	we	must	begin	to	tackle	the	problem	on	a	small	scale,	

and	the	small	scale	is	the	‘me’	and	the	‘you’.”

— Shailesh Shirali

The Closing Bracket . . .



Specific Guidelines for Authors 

Prospective authors are asked to observe the following guidelines. 

1.	 Use	a	readable	and	inviting	style	of	writing	which	attempts	to	capture	the	reader's	attention	at	the	start.	

The	first	paragraph	of	the	article	should	convey	clearly	what	the	article	is	about.	For	example,	the	opening	

paragraph	could	be	a	surprising	conclusion,	a	challenge,	figure	with	an	interesting	question	or	a	relevant	

anecdote.	Importantly,	it	should	carry	an	invitation	to	continue	reading.	

2.	 Title	the	article	with	an	appropriate	and	catchy	phrase	that	captures	the	spirit	and	substance	of	the	article.	

3.	 Avoid	a	'theorem-proof'	format.	Instead,	integrate	proofs	into	the	article	in	an	informal	way.	

4.	 Refrain	 from	 displaying	 long	 calculations.	 Strike	 a	 balance	 between	 providing	 too	many	 details	 and	

making	sudden	jumps	which	depend	on	hidden	calculations.	

5.	 Avoid	specialized	jargon	and	notation	—	terms	that	will	be	familiar	only	to	specialists.	If	technical	terms	

are	needed,	please	define	them.	

6.	 Where	possible,	provide	a	diagram	or	a	photograph	that	captures	the	essence	of	a	mathematical	idea.	

Never	omit	a	diagram	if	it	can	help	clarify	a	concept.	

7.	 Provide	a	compact	list	of	references,	with	short	recommendations.	

8.	 Make	available	a	few	exercises,	and	some	questions	to	ponder	either	in	the	beginning	or	at	the	end	of	the	

article.	

9.	 Cite	sources	and	references	 in	 their	order	of	occurrence,	at	 the	end	of	 the	article.	Avoid	 footnotes.	 If	

footnotes	are	needed,	number	and	place	them	separately.	

10.	 Explain	all	abbreviations	and	acronyms	the	first	time	they	occur	in	an	article.	Make	a	glossary	of	all	such	

terms	and	place	it	at	the	end	of	the	article.	

11.	 Number	all	diagrams,	photos	and	figures	included	in	the	article.	Attach	them	separately	with	the	e-mail,	

with	clear	directions.	 (Please	note,	 the	minimum	resolution	 for	photos	or	scanned	 images	should	be	

300dpi).	

12.	 Refer	to	diagrams,	photos,	and	figures	by	their	numbers	and	avoid	using	references	like	'here'	or	'there'	or	

'above'	or	'below'.	

13.	 Include	a	high	resolution	photograph	(author	photo)	and	a	brief	bio	(not	more	than	50	words)	that	gives	

readers	an	idea	of	your	experience	and	areas	of	expertise.	

14.	 Adhere	to	British	spellings	–	organise,	not	organize;	colour	not	color,	neighbour	not	neighbor,	etc.	

15.	 Submit	articles	in	MS	Word	format	or	in	LaTeX.	
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