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Paul Erdos

Paul Erd6s was a problem poser par excellence. It is said that he had the curious ability of

knowing the rightlevel of problem with which to challenge those around him!

Here is a geometricinequality posed by him as a problem,which is now regarded as a classic -
the Erd6s-Mordell inequality: If Pis a point within a triangle ABC, and D,E,F are the feet of the
perpendiculars from P to the sides, then PA+PB+PC=2(PD+PE+PF). Equality holds just when

triangle ABCis equilateral and P is its centroid.

A

B D €
PA+PB+PC > 2(PD+ PE + PF)
A proof was provided in 1937 (the 'Mordell’ in the name of the theorem comes from the

proof). Subsequently some generalizations have been discovered, and elementary

geometrical proofs found. An analogue of this result is known for tetrahedra too.




From The
Chief Editor’s Desk...

t is most appropriate that we feature in this issue one of the great

characters of twentieth century mathematics: Paul Erddés, the

itinerant mathematician, who lived out of a suitcase, collaborated with
mathematicians everywhere he went, and wrote more papers than
anyone else in the history of the subject; for this is the centenary of his
birth. R Ramanujam writes about him in the context of problem-posing.
We hope this article will herald aregular ‘Erd6s column’ in At Right Angles,
devoted to Erdés-style problems.

Itis always nice to see derivations based on a minimum of higher concepts.
Sadagopan Rajesh shows us how Brahmagupta’s elegant formula for the
area of a cyclic quadrilateral can be derived using Heron’s formula and the
geometry of similar triangles. B Sury takes up the second instalment of his
article on the Principle of Inclusion and Exclusion. This is followed by Part
2 of my own article on Harmonic Triples. Devang Ram Mohan writes on a
subject that may not immediately be recognized as being part of
mathematics: the art of making matches optimally! In fact, optimization in
matchings is a well known topic in operations research, and it was the
topic of last year’s Nobel Prize in Economics. So it is very appropriate that
youread aboutithere.

In ‘Classroom’ we start with an essay on Angles which explores some
pitfalls that can waylay the young student, concerning measurement of
angles. Sneha Titus talks about two contrasting styles of teaching
mathematics — the ‘path smoothing’ way and the ‘enabling’ way. This
matter has considerable relevance for us in India, for path smoothing is so
rooted in our culture. Ajit Athle then leads us through two interesting
problems in geometry and draws out more lessons in the art of problem
solving in geometry. Tanuj Shah follows by showing how the
combinatorics of Braille makes for a rich Math Club topic, and Prithwijit
Denarrates an allegorical tale based on an elegant combinatorial property
of perfectsquares.

In ‘Tech Space’ Thomas Lingefjard points to some interesting GeoGebra
explorations that can be made in the fertile territory common to number
theory and geometry. Then in ‘Reviews’, Dheeraj Kulkarni talks about a
fascinating set of math videos freely available on the web, devoted to the
topic of Dimension; would that more such videos become available!
Padmapriya Shirali has the closing piece, a Pullout on the teaching of
Number Operations; this continues the piece which appeared in the
previousissue, on Place Value.

One of the aims of starting this magazine was to facilitate a networking of
mathematics teachers across the country, and to help bring about a
culture of dialogue amongst us. We have begun in small ways to do this,
through math teacher workshops. We hope to reach out in a much greater
way through an online presence. We are working on this - do stand by for
further announcements! You could also contact us if you would like to
arrange aworkshop in your city.

- Shailesh Shirali
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This section has articles dealing with
mathematical content, in pure and applied
mathematics. The scope is wide: a look at a topic
through history; the life-story of some
mathematician; a fresh approach to some topic;
application of a topic in some area of science,
engineering or medicine; an unsuspected
connection between topics; a new way of solving a
known problem; and so on. Paper folding is a
theme we will frequently feature, for its many
mathematical, aesthetic and hands-on aspects.
Written by practising mathematicians, the
common thread is the joy of sharing discoveries

and the investigative approaches leading to them.
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Paul ErdOs

The Artist of
Problem-Posing

Notes from a small suitcase

Paul Erdds has been described as one of the most universally adored mathematicians
of all time. No mathematician prior to him or since has had quite the lifestyle he
adopted: the peripatetic traveller living out of a suitcase, moving from one friend’s
house to another for decades at a stretch, and all the while collaboratively generating
papers; no one has had quite the social impact he has had, within the community of

mathematicians. This article offers a glimpse of his life and work.

A theorem on Facebook

It's very likely that you have a Facebook account, and of course, you
have many friends on Facebook. If X is your friend on Facebook,
then you are X’s friend on Facebook too. But it’s possible that Yis X’s
friend and not yours. Still, | am sure you and X have many common
friends, forming a trio of friends. Now, here is a question for you.

What is the smallest number n of people on Facebook such that there
is definitely a trio among them, either all of whom are friends with
each other, or none of whom are friends with each other?

With three people, say 4, B and C, it is easy that we will not have this
property: let A and B be friends, neither of whom are friends with

C. What about four people, 4, B, C and D? Again it is easy: make A
and B friends, C and D friends, and no more. In both these case the
desired trio is not to be found.
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When we have five people, it is a little more
difficult, but a picture can help think about it.

Let us have points denoting the 5 persons; draw
ared line connecting them to denote that they
are friends on Facebook, and a blue line between
them to denote that they are not. Now a red
pentagon with the persons on vertices and blue
lines to ‘opposite’ vertices (as in Figure 1) should
convince you that we can indeed have a situation
without the desired property.

friends
non-friends

A

C D
Figure 1: Pentagon with ‘red’ edges, ‘blue’ diagonals:
no trio of the desired kind

Now to six. Take some time off now to draw
pictures like the above. The hexagon with its
diagonals does not help; while we get many
interesting pictures, we get none that works like
the one with five vertices. At this point, we start
suspecting that six might indeed be the smallest
number we seek. But then we need a proof that
among any six persons on Facebook, we have a
trio, either all of whom are friends, or not-friends.

Call the newcomer F. We first observe that we
already know something about F!

Claim. Among the other five persons, there are at
least three among them such that F is a friend of
all three, or Fis friends with none of the three.

m O N @ >

Figure 2: Whom is F friends with?
This figure shows one of many possibilities.
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Why? Suppose not. Let us argue with reference to
a picture like the one we drew earlier; see Figure
2. We focus on the ‘lines’ coming out from F. Each
line is red or blue. Since there are five such lines,
one colour occurs three times or more. Whichever
that colour is, we get the three persons we want.
(If this colour is red, then the three persons the
lines connect to are friends of F, else they are
non-friends.)

Nice. Suppose that the three persons identified
in the previous step are 4, B, C. (It could be any
three; we have renamed them as 4, B, C.) Their
relationship with F is the same: all friends or all
non-friends. Suppose they are all friends of F.
Now if any two of 4, B, C are friends with each
other, these two together with F form a trio of
friends. And if no two among 4, B, C are friends
with each other, then 4, B, C form a trio of non-
friends! Either way we get the trio we need.

Please check that all possible cases can be
disposed of in a similar way. So we have proved a
Facebook Theorem that is valid for any six of the
millions of members who use that site, knowing
nothing at all about them!

The picture that we drew was a graph, with edges
connecting pairs of vertices. We used two kinds

of edges, red and blue. We can call this an edge-
colouring of the graph with two colours. When
every pair of vertices has an edge between them,
we call it a complete graph. A complete graph on n
vertices is denoted by K,,. (So K> is just an edge, K3
is a triangle, and K, is a quadrilateral with its two
diagonals.)

In this language, what we showed was the
following: if each edge of K5 is coloured red or
blue, then a monochromatic K3 may not get
created, but if each edge of K is coloured red or
blue, then a monochromatic K3 necessarily does
get created. (‘Monochromatic’ means that all
edges have the same colour.)

The critical number 6 is an example of a Ramsey
number (named after the mathematician and
logician Frank Plumpton Ramsey) of a graph,

the minimum number of vertices needed to
force a monochromatic subgraph inside it. More
rigorously, given any two numbers s and ¢, the



Ramsey number R;(s, t) is the smallest integer m
satisfying the property that if the edges of K, are
coloured red or blue, then no matter which way it
is done there is either a subgraph K; with all red
edges, or a subgraph K; with all blue edges. With k
colours, we can similarly speak of Ri(s, ). What we
showed above was: Ry(3, 3) = 6.

Why should anyone care about Ramsey numbers?
For one reason, finding them is extremely hard!
Only a handful are known, and Table 1 lists all the
known Ramsey numbers of the form R, (s, t).

You will find it a nice challenge to show that
Ry(3,4) =09.

In the absence of any practical algorithm for
computing exact values of Ramsey numbers,

a great deal of research effort has been
concentrated on obtaining bounds instead.

For diagonal Ramsey numbers, i.e.,, Ramsey
numbers of the form R;(s, s), some bounds are
known. For instance, it can be shown without too
much difficulty that R,(s, s) < 4%, an upper bound.
Getting lower bounds is much harder.

s 3 3 3 3 3 3 4 4
t 4 5 6 7 8 9 4 5
R(st) 9 14 18 23 28 36 18 25

Table 1: All the known Ramsey numbers

Erdoés’s probabilistic proof of Theorem 1.

Consider an edge blue/red colouring of K, in
which the colour for each edge is assigned
randomly and independently, with probability
1/, for each.

How many copies are there of Kj in this
configuration? Clearly as many as there are
subsets of size kin the set {1, 2, 3, ..., n}, i.e,
(). What is the probability that any particular
copy is monochromatic? Each of the (‘;) edges
in the chosen Kj gets a particular colour with
probability !/,, and there are two colours to
choose from, so the probability is equal to
1 k
2 53 =2 G),

Figure 3: Paul Erd@s having a chuckle.
Source: http://24.media.tumblr.com/tumblr_
maobc7dXYQ1qgipuzxo1_1280.jpg

In 1947, the mathematician Paul Erdés
(pronounced Air-dsh) proved this remarkable
theorem

Theorem 1k Let k, n be positive integers such that
2(}) < 2(2). Then Ry(k, k) is greater than n.

In order to show that R,(k, k) > n, it suffices to
show that there exists at least one colouring of the
edges of K,, which results in no monochromatic Kj.
Erdés showed this probabilistically! The details
are given in Figure 4.

Hence the probability that there exists a
monochromatic Kj is at most

() - 21 G).

(For, the probability of a union of several
events is at most the sum of the probabilities
of the individual events.)

This quantity is less than 1 by the
assumption of the theorem, hence the
probability that there exists a colouring
with no monochromatic K is greater than 0.
Therefore, there exists a colouring with no
monochromatic Ky, and we are done.

Figure 4: A random proof!
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The master who could count by
tossing coins

Erdds was 33 years old when he proved

Theorem 1. This way of proving the existence of
something by showing that the probability that

it exists is positive is typically Erdés’s. He loved
the probabilistic method and used it to great
advantage to solve problems in number theory,
combinatorics and graph theory. He would set up
some mechanism for counting the number of ways
of doing something, compute the probability of an
event, and show that some mathematical object
exists. Joel Spencer, who did a lot of work with
Erdds refers to this as ‘Erdds magic’.

Erdés could ask questions on counting pretty
much anything. Consider k points and ¢ lines

on the plane. We might ask many questions
concerning them, but here is one of Erdés’s
questions: What is the maximum number f (k, t)
of incidences between the points and the lines?
He conjectured that the points of a square grid
and a certain set of lines give the optimal order of
magnitude. This was confirmed only decades later
by Szemerédi and Trotter, in 1983.

Here is Erdds proposing a question for the student
journal Quantum. Let f (n) be the largest integer
for which there is a set of n distinct points xy, xo,

... Xp in the plane such that for every x; there are

at least f (n) points x; which are equidistant from
x;. Determine f (n) as accurately as possible. Is it
true that f (n) is approximately n®for every ¢ > 0?
Erdds offered $500 for a proof and ‘much less’ for
a counterexample. The question was settled in
1990.

This was also typical of the Erdés style; he posed
thousands of problems, and offered prize money
for solving many of them.

Very early on, Erdés was attracted to number
theory, but there too he turned to counting orders
of magnitude. In 1934, when he was 21 years old,
Erdés heard of Simon Sidon’s work on sequences
of integers with pairwise different sums. In 1938
he asked: what is f (n), the maximum number

of positive integers a; < n such that the pairwise
products a;q; are all distinct? He answered the
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question by reducing it to a question in
graph theory.

Through his questions, Erdés led us in many
directions that we could not have imagined

to exist. Here is an example. In 1927 van der
Waerden published a celebrated theorem, which
states that if the positive integers are partitioned
into finitely many classes, then at least one of
these classes contains arbitrarily long arithmetic
progressions. In 1936, Erdds and Turan realised
that it ought to be possible to find arithmetic
progressions of length k in any ‘sufficiently dense’
set of integers, which would show that the par-
titioning in van der Waerden'’s theorem was, in a
sense, a distraction. The conjecture was proved by
Szemerédi in 1974. Not only is it a very difficult
proof, but the regularity lemma that he used in the
proof has become a central tool in graph theory
and theoretical computer science. (Szemeredi was
awarded the prestigious Abel prize last year.)

A question both deep and
profound
Is whether a circle is round.
In a paper of Erdds
Written in Kurdish

A counter example is found.

Erdés made another related conjecture, far more
famous and still open. Let X be any set of positive
integers such that the series Zyy % diverges. Then X
contains arbitrarily long arithmetic progressions.
Note that the set of primes is an example of such
a set. The general question is open (as noted), but
Green and Tao showed in 2004 that the primes
contain arbitrarily long arithmetic progressions.
(Terence Tao was awarded the Fields prize in
2006.)



All this is very deep mathematics, but what
about the fun part? Often, it was recreational
mathematics that led Erdés to the deep end. Here
is an example. A distinct pair of numbers (m, n)
is said to be amicable if the sum of the proper
divisors of m is n, and vice versa. The smallest
such pair is (220, 284). It is still unknown if there
are infinitely many amicable pairs, but Erdés
showed that the set of amicable numbers has
density zero. This means, roughly speaking, that
they are quite rare.

The man without boundaries

By now the picture of Paul Erdés, the great
problem solver and problem poser, must have
taken shape. But he not only posed problems, he
also sought out people to pose the problems to.
He offered sums of money as encouragement for
students to think about problems. Much of this
money was his own, he gave freely to numerous
non-mathematical charities and causes as well,
keeping hardly any money for himself.

Figure 5: Two images of Paul Erdés.
Source: http://www-history.mcs.st-and.ac.uk/
Mathematicians/Erdos.html

When he published his first paper in 1932 Erd&s
was merely 18. He continued to publish until
2003, almost 7 years after his death as some
straggling papers continued to be published
posthumously! He published 1521 papers in

all, collaborating worldwide with a staggering
number of mathematicians. How could he do this?

Erdés was prolific because his life was wholly
devoted to mathematics. He did not have a job,
aregular place of stay, or more possessions

than he could carry with him in his two (half
empty!) suitcases. He travelled from university to
university, from mathematician to mathematician,

working until his collaborator was exhausted,
and then moving on. He did not cultivate human
contact outside of his mathematical interactions,
with the exception of his mother, whom he loved
dearly. He didn’t have to cook, clean or keep
house; he had a cadre of people who looked after
him, saw to it that he had food, shelter and, when
necessary, a visa for his next destination.

Even the language of Paul Erdés was idiosyncratic.
To him, children were ‘epsilons’, people ‘died’
when they stopped doing mathematics, and
people ‘left’ when they actually died. He didn’t
lecture, he ‘preached’, and when he was ready

to do mathematics, ‘his brain was open’. To him,
God was the ‘Supreme Fascist’. But there was
something that was divine for him: he used to
speak of The Book in which all beautiful theorems
and proofs was written down; the job of the
mathematician was only to find them. When

he found a really elegant argument, he would
exclaim, “Ah, that’s from The Book!”

Paul Erdds had a hard life. Born in 1913 in
Budapest, Hungary, he was a child at the time of
World War |, and the years after the war were
worse. Jews were not allowed to attend university,
and Erdds had to pass a national examination in
1930 before he was exempt from these ‘fascist’
rules. He attended the University Pazmany
Peter in Budapest from 1930 to 1934 and then,
fleeing the repressive regime in Hungary, went
to Manchester in England for research. His
mathematical wanderings began and he worked
also in Cambridge, London, Bristol and other
places.

By 1938 he could no longer safely return to
Hungary because of Hitler’s control of Austria, and
Erdds spent a year at the Institute for Advanced
Study in Princeton University in the USA. After

a year, he left Princeton, and started wandering,
university to university, mathematician to mathe-
matician, and conference to conference. In 1945
he received word that most of his extended family
had been killed in Auschwitz and that his father
had died of a heart attack in 1942. He visited
Hungary, and spent time in England and the USA.
But by 1954, he had problems with the USA which
refused to issue an entrance visa for him, alleging
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communist sympathies. Eventually his entry
was eased, after petitions from mathematicians,
but all this made Erdds sceptical of nations and
boundaries.

Erdés collaborated with 509 authors, nearly
twice as many as the next most well connected
mathematician. He collaborated so much that
the most accepted measure of connectedness
is the Erd6s number (EN): the simple distance

connecting a person with Erdés by co-authorship.

Erddés himself has EN zero; the lucky 509
co-authors have EN one, and those who have co-
written an article with one of this group has EN
two (there are 6984 of them), and so on. !

If ever there was a mathematician who knew no
boundaries, national or subject-wise, it was Paul
Erdds, the ultimate problem solver and problem
poser.

jam@imsc.res.in.

Further reading

e A.Baker, A. Bollobas and A. Hajnal,
A Tribute to Paul Erdds, Cambridge
University Press, 2012.

e Deborah Helligman, The Boy Who Loved
Math: The Improbable Life of Paul Erdds,
Roaring Brook Press, 2013.

e  Paul Hoffman, The man who loved only
numbers, Hyperion, 1999.

®  Bruce Schechter, My Brain is Open: The
mathematical journey of Paul Erdéds, Simon
and Schuster, 2000.

1. The author of this article is proud to be among the
26,422 who have an Erdés number of three.

R Ramanujam is a researcher in mathematical logic and theoretical computer science at the Institute of
Mathematical Sciences, Chennai. He has an active interest in science and mathematics popularization
and education, through his association with the Tamil Nadu Science Forum. He may be contacted at

A well-known quote, and a favourite among mathematicians, is:

A mathematician is a machine
for turning coffee into

theorems

) h 4

This meta-theorem has been widely

ascribed to Paul Erdés, but most likely
it originated from another
Hungarian mathematician,
Alfréd Rényi, who was a long-
time friend and colleague
of Erdos’s.
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A third Hungarian,
Paul Turan, added the
following:

Weak coffee
is suitable
only for
lemmas.




| dare to find a proof

Area of a Cyclic
Quadrilateradl

Brahmagupta’s Theorem

A surprising but true fact: sometimes a ‘low-tech’ proof of a theorem
is less well-known than the ‘hi-tech’ one. In this article we see
an example of this phenomenon.

SADAGOPAN RAJESH

hen students ask me a relevant question, [ am
W reminded of this conversation between a mother

and child. Child: “Mummy, why are some of your hairs
turning grey?” Mother (trying to make best use of the question):
“It is because of you, my dear. Every bad action of yours turns

one of my hairs grey!” Child (innocently): “Now I know why
grandmother has only grey hairs on her head!”

[ try to answer relevant questions by students in an appropriate
way. When students asked me for the proof of Heron’s formula
which they had found in their textbook (but without proof), I
gave them a proof using concepts they know, similar to the one
given in At Right Angles (Vol. 1, No. 1, June 2012, page 36), and
suggested they look up some internet resources. Later, they told
me that they had come across Brahmagupta’s formula (for area of
a cyclic quadrilateral), had noted its similarity to Heron’s formula,
but had found the proof used ideas from trigonometry. They
asked whether the theorem can be proved using geometry and
algebra. I took up the challenge and found such a proof. Here it is.

Vol. 2, No. 2, July 2013 | At Right Angles 11
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The theorem is due to the Indian mathematician Brahmagupta (598-670 A.D.) who lived in the central
Indian province of Ujjain, serving as the head of the astronomical observatory located there. It was
Brahmagupta who wrote the important and influential work Brahmasphutasiddhanta. (This is the first
mathematical text to explicitly describe the arithmetic of negative numbers and of zero.)

Brahmagupta’s formula gives the area of a cyclic quadrilateral (one whose vertices lie on a circle) in terms
of its four sides.

Here is the statement of the theorem.

Theorem (Brahmagupta). If ABCD is a cyclic quadrilateral whose side lengths are a, b, ¢, d, then its area o
isgiven by o = \/(s —a)(s—b)(s—c)(s—d)wheres = %(a + b + c + d) is the semi-perimeter of the
quadrilateral.

Note the neat symmetry of the formula. We shall prove it using familiar concepts in plane geometry such
as: (i) properties of a circle (ii) properties of similar triangles (iii) Heron’s formula for the area of a
triangle, according to which the area of a triangle ABC with sides a, b, c is equal to

\/s(s —a)(s —b)(s —c) where s = %(a + b + ¢) is half the perimeter of the triangle.

Before offering a proof let us pass the formula through a ‘check list’ of simple tests.

o [s the formula dimensionally correct? Yes; the quantity within the square root is the product of four
lengths, so the quantity o = \/(s —a)(s — b)(s — ¢)(s — d) has the unit of area.

o [s the formula symmetric in the four quantities a, b, c, d? Yes. (It would be strange if the formula
‘preferred’ one quantity to another. An example of a formula which is dimensionally correct but not

symmetric in a, b, ¢, d would be the following: \/(s —3a)(s — 3b)(s — z0)(s — d).)

* Does the formula give correct results when one side shrinks to zero? Suppose that d = 0. This means that
vertices A, D of the quadrilateral have collapsed into each other, and the figure is a triangle (with
vertices 4, B, C) rather than a quadrilateral. The Brahmagupta formula now reduces to
\/ s(s — a)(s — b)(s — c¢) which is simply Heron’s formula for area of a triangle — a known result.

LemmnTTes ) A,D

B \/ ) B v )
FIGURE 1. Here, vertices A, D have coalesced into each other (hence d = 0)

* Does the formula yield the correct result for a rectangle, which is a special case of a cyclic quadrilateral? It
does: if the rectangle has dimensions a X b, then s = a + b, and the formula yields
og=+Vb-a-b-a = ab, which is correct.

We see that the formula has passed all the tests; this increases our confidence in it (but of course,
these steps are not a substitute for a proof). It is in general a useful exercise to subject a formula to
tests like these.

A final comment: the formula gives the area of a cyclic quadrilateral in terms of its sides. Implicitly such a
formula makes the claim that if the sides of a quadrilateral are fixed, and we are told that the quadrilateral
is cyclic, then its area gets fixed. This is so, and it can be proved. For a general quadrilateral there cannot
be a formula for area only in terms of its four sides, for the simple reason that the four sides alone cannot
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fix the quadrilateral. (To see why, think of the quadrilateral as made of four jointed rods having the given
lengths. Such a shape is obviously not rigid, so the area is not fixed.)

Proof of the formula

Let ABCD be a cyclic quadrilateral. Since we know that the Brahmagupta formula works for rectangles,
there is nothing lost by assuming that ABCD is not a rectangle. In this case at least one pair of opposite
sides of the quadrilateral are not parallel to each other. We shall suppose that AD is not parallel to BC, and
that lines AD and BC meet when extended at point P as shown in Figure 2. (Under the assumption that
AD is not parallel to BC, this will be the case if AB < CD.If AB > CD, then AD and BC will meet on the
‘other’ side of the quadrilateral. The third possibility, that AB = CD, cannot happen since we have
assumed that AD and BC are not parallel to each other.)

Elementary circle geometry shows that APAB ~ APCD; for we have « PAB = 4« PCD and

4« PBA = 4£PDC; and the angle at P is shared by the two triangles. Let a, b, ¢, d be the lengths of
AB,BC,CD, DA; let u, v be the lengths of PA, PB; and let e, f be the lengths of the diagonals AC, BD
respectively (see Figure 2). Our strategy will now be the following:

Step 1: Find u, v in terms of a, b, ¢, d, using the similarity APAB ~ APCD.

Step 2: Find the area of APAB using Heron’s formula.

Step 3: Find the area of APCD, once again using the similarity APAB ~ APCD.
Step 4: Find the area of the quadrilateral, by subtraction.

Sounds simple, doesn’t it? Here’s how we execute the steps.

Steps 1 & 2: Let the coefficient of similarity in the similarity APAB ~ APCD be k. Since the sides of APAB
are u, v, a, while the corresponding sides of APCD are v + b,u + d, ¢, we have:

v+ b = ku, u+d=kv, ¢ = ka. (1
Hence we have:
k_c _b—d a(b-d N _b+d ab+d) )
T a YTVEYFLT Tera YTPE 1T Te—a (2)
FIGURE 2.
Therefore the semi-perimeter s’ of APAB is given by:
alb+d) abb+c+d-—a)
2s'=a+u+v=a+ = . (3)

c—a c—a
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Hence we have the following relationship between s’ and the semi-perimeter s of quadrilateral ABCD:

, a(s—a)

s'=——. (4)

c—a
To compute the area of APAB we need expressions for the following:

a(b+d) a(d+a+b—-c) 2a(s—c)
2s' —2a=u+v—a= —a= = )
c—a c—a c—a

_a(b—d) _a(c+d+a—-b) 2a(s—Db)

2s'—2u=a+v—u= )
c+a c+a c+a
a(b—d ala+b+c—d 2a(s—d

2s' —2v=a4+u—v=a+ ( )= ( )= ( ).
c+a c+a c+a

Hence the area A" of APAB is given by

a(s—a) a(s—c) a(s—>b) a(s—d)
c—-a c¢c—a c+a c+a

N =56 -G 0 — ) =

(5)

This simplifies to:
2

a
N:—T?J@—@@—m@—@@—@. (6)

c2
We have now found the area of APAB.

Step 3: The scale factor in the similarity APAB ~ APDC is k = c/a. So the area A” of APCD is k? = ¢?/a?
times the above expression; that is,

C2
A" = m\/(s—a)(s—b)(s—c)(s—d). (7)

Step 4: The area ¢ of quadrilateral ABCD is equal to A” — A’. This simplifies to:

o=y —a)(s—b)(s—)(s—d), (8)

and we have proved Brahmagupta’s formula.

Exercise. Derive the following formulas for u and v:

a(ad + bc) a(ab + cd)
V= —7".

c2 — q? ’ c2 — g2
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Set theory revisited

As easy as PIE

Principle of Inclusion and Exclusion — Part 2

In Part-I of this article we solved some problems using the PIE or the ‘Principle
of Inclusion and Exclusion’ We saw how the law |AU B| = |A| + |B| — |A N B
generalizes, and we used the PIE to find a formula for Euler’s totient function
@(N) which counts the number of integers in the set {1, 2, ..., N} which are
coprime to N. Now in Part-II we use the PIE to find a generalization of the
formula connecting the gcd and lcm of two numbers. We also discuss a
problem about a secretary who loves mixing up job offers sent to applicants,
and another problem concerning placement of rooks on a chessboard.

I. The Mobius function

You would have noticed in the first part of this article (PIE-I) that
the same kind of sum has been coming up repeatedly, in which
terms are alternately positive and negative. A convenient way of
writing such sums is through the use of a function called the
Mobius function, written pu(n) and read aloud as ‘mew of n’. It is
defined as follows: u(1) = 1, and:

¢ If n is the product of unequal prime numbers, then u(n) = 1 if
the number of primes is even, and u(n) = —1 if the number of
primes is odd. So u(p) = —1 for any prime p; u(pq) = 1 for any
two unequal primes p, g; and so on. Here is a more compact
way of writing this: if n is the product of r distinct primes, then
u(m) = (—1)". Examples: u(5) = =1, u(10) = 1, u(30) = —1.

« If n is divisible by the square of any prime number, then
u(n) = 0. Examples: u(4) = 0, u(12) = 0.
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Using this function, an expression such as

N N N
N—<;+—+—+~->

can be written compactly as

> ).

diN

Hence, we have:

N
PN = D u(d) - &)

amN

Incidentally, the name Mébius is popularly
known in another context — the so-called
Mébius strip, which will be a topic for another
day.

The Mobius function has numerous nice
properties which make it a very useful function in
number theory and combinatorics.

II. Relation between GCD and LCM of
several numbers

To demonstrate how unexpectedly useful the
PIE formula can be, we describe a nice
application of the formula. Here is the context.
We all know the pleasing formula that relates
gcd (‘greatest common divisor’, also known as
‘highest common factor’) and Icm (‘lowest
common multiple’) of any two positive integers
a and b:

gcd(a, b) X lcm (a, b) = ab. (2)

This formula relates the gcd and lem of two
integers a, b. Here is the corresponding formula
for the case of three integers. If a, b, c be any
three positive integers, then:

lem (a, b, ©)
_ abc x gcd(a, b, c)
"~ ged(a, b) x ged(b, ) x ged(a, ¢)

(3)

For the general case we need the following result
which is actually the PIE in another incarnation
(though it may not look like it):
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Theorem (PIE'). If ny,n,, -, n, is a finite sequence
of positive integers, then

max(nq, -+, n,)

= Z n; — Z min (ni'nj)

i i<j
+ Z min (ni,nj,nk)
i<j<k

— 4+ (=D tmin(ny,--,n,). (4)

Here, ‘max’ and ‘min’ stand for maximum and
minimum respectively. The symbol ., ; means:
‘the sum over all pairs of indices i, j where i < j.
Similarly for the symbol Zi<].<k and others like it.
The formula may look mysterious, so it will help if
we examine it more closely.

¢ Take the case of two positive integers a, b. Then
the claim is that

max(a,b) = a + b — min(a, b).

This is clearly true.

« Take the case of three positive integers a, b, c.
Then the claim is that

max(a,b,c) = a+ b+ ¢ — min(a, b)
— min(a, ¢) — min(b, ¢)

+ min(a, b, ¢).

To see why this is true, suppose (there is no loss
of generality in assuming this) thata < b < c.
The above claim then reduces to the following:

c=a+b+c—(a+a+b)+aq

which is clearly true.

» Take the case of four positive integers a, b, ¢, d
where (without any loss of generality, as
earlier) a £ b < ¢ < d. Then the claim reduces
to the following claim:

d=a+b+c+d
—(a+a+a+b+b+c)
+(a+a+a+b)—aq

which is clearly true. The general case may be
similarly reasoned out and is left as an exercise.

To convince ourselves that the above can indeed
be useful in unexpected ways, let us look at a set



aq, a,, -+, a, of positive integers. Then we will
show the following:

Iem (aq, -, a,) =
(Hi ai) (Hi<j<k ng (air aj' ak))

(Hi<j ged (a;, aj)) (Hi<j<k<l ged (ay a;, ay, al))
()

This will be deduced from statement (4) about
maxima and minima. To see the connection,
consider the prime numbers dividing the a;’s.
Then, clearly: the exponent of a prime p dividing
the gcd of a collection of numbers is equal to the
minimum of the exponents of p dividing the
numbers, and the exponent of a prime p dividing
the lem of a collection of numbers is equal to the
maximum of the exponents of p dividing the
numbers.

Thus, if p™, -+, p™ are the powers of a fixed prime
p dividing the numbers a4, :*-, a,, then the gcd of
the a;’s is exactly divisible by p™i"(™m) and the
lcm of the a;’s is exactly divisible by p™ax(tu-nr),
Let us use the short form Ord,, (N) for the largest
integer e such that p® divides N. Then if we raise
p to each of the terms of the equality

max(nq, -+, n,)
= z n; — Z min (ni,nj)
i i<j
+ Z min (ni,nj,nk)
i<j<k

— 4+ (=)™ min (ny, -,n,),

(to see why, you need to use repeatedly the fact
that p®*? = p@xp? and p*~? = p*®+p?), we obtain

Ord, (Iem (ay, -+, a,))

( (Hl a;) (Hi<j<k ged (aiv ajrak))"' )
= Ord, .
(Hi<j ged (a;, a,-)) (Hi<j<k<l ged (ai,aj,ax, az))

We have obtained expression (5) for the lcm of the
a;’s.

III. The secret(ary) adversary

Here is another well-known problem concerning
a particularly careless (or perhaps mischievous)
secretary. The scenario is that a rich person
writes a letter each to Alka, Beena, Chanda and

Deepa offering different financial scholarships to
each, but the secretary puts each letter in a
wrongly addressed envelope. The financier is
naturally cross and asks the secretary to correct
his mistake. However, the secretary again puts
each letter in a wrong envelope! How many ways
can he make such a mistake? A bit of counting
(which we leave as an exercise for you) shows
that the number is 9.

What is the best way to figure out this number if
there are n people and n envelopes (and each
letter must go to the wrong person)? Once again,
the PIE comes to the rescue. The total number of
ways of distributing n letters among n persons
(one letter to each person) is of course n!. Let N,
be the number of ways of distributing the letters
so that at least one person (it could be any of the
n persons) gets his or her correct letter; let N, be
the number of ways of distributing the letters so
that at least two persons get their correct letters;
let N; be the number of ways of distributing the
letters so that at least three persons get their
correct letters; and similarly for N4, N, .... (Note
that by this notation we could say that Ny = n!.)
Then the PIE tells us that the number of ways of
distributing the letters so that no one gets their
letter is

NO_N1+N2 _N3+N4_+"'+(_1)nNn.

Computing N4, N,, ...is easy. Suppose that at least
r people receive their correct letters. Let us look
at a fixed set of r people. For the remainingn —r
persons no restriction has been placed, so the
number of ways of distributing the letters is

(n —r)!. This is so for each fixed set of r persons,
and there are () such sets; hence

N, = () x (n— )l It follows that the number of
possibilities in which when no one receives their
correct letter is

nl —(?)(n —1)! +(Z)(n —2)! —(Z)(n —3)!

+oe (—1)'1(2)0! = n!zn: (—r1!)r
=0

This is called the derangement number and it is
denoted by D,,; so D,, = n! Zfzo(—l)r/r!.

Here are the values of the first few such numbers:

nl12345 6
D,[0 129 44 265 -
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IV. Chess-‘bored’ Rooks?

The next example we mention is to do with a
chess board. We know that there are 8! ways of
placing 8 rooks on a chess board such that no
two attack each other. This is because on the top
row, one can place a rook on any one of the 8
places; the second rook can be placed on the
second row on any one of the 7 columns other
than the column containing the first one. Then,
the third rook can be placed on the third row on
any of the 6 columns not containing either of the
two rooks, etc.

Now, what if we fix a subset T of the n? squares
in an X n chess board where the rooks do not
like to sit (let us say these seats are ‘boring’)?
That is, we place n mutually non-attacking rooks
on the chess board such that none of the rooks
are on the T-squares. How many ways can this be
done? (Of course, this will depend on T.)

Let us look at an example where the chessboard
has size 4 X 4. Denote the 16 squares by ordered
pairs (i,j) where 1 < i,j < 4. Suppose
T={(1,1),(2,2),(3,3),(3,4),(4,4)}. Counting
carefully gives us 6 possibilities of placing 4
non-attacking rooks with no rook on any of the 5
T-squares. Indeed, the possible arrangements
are these:

(1,2),(2,4),(3,1),(4,3)
(1,3),(2,4),(3,1),4,2)
(1,4),(2,3),(3,1),4,2)
(1,4),(2,1),(3,2),(4,3)
(1,3),(2,4),3,2), 4 1)
(1,4),(2,3),3,2), 4, 1)

In general, let us look at an n X n chessboard and
a fixed subset T of squares. Let T, denote the
number of ways of placing r non-attacking rooks
on T. Then, by the PIE, the number N of ways of
placing n mutually non-attacking rooks such that
none of them lies on a T-square is given as

N=nl—(n—1DITy+ 0 —2!Ty — -+ (—D)"T,.

The proof of this is left to the reader as an
exercise.
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V. Deep waters

Finally, we draw attention to some connections

of the Mobius function with prime numbers at a
basic but deep level. One of the great discoveries of
the great Carl Friedrich Gauss is a prediction
known as the prime number theorem. At the ripe
old age of 15 (in 1792), Gauss conjectured that the
number m(x) of prime numbers not exceeding a
given number x is ‘asymptotic’ to x/log(x). By
‘asymptotic’, one means here that the ratio

m(x) + x/In x gets arbitrarily close to 1 as x gets
arbitrarily large.

More precisely, he predicted that m(x) is
asymptotic to the following integral:

This most amazing statement became a theorem
only a century later when it was proved
simultaneously and independently by Hadamard
and by de la Valle Poussin. The remarkable fact is
that this theorem is equivalent to the
simply-stated assertion that

1
;Zu(n)eo as x — oo,

nsx

Of course, this is only neat as a statement. Proving
itis just as difficult as proving the prime number
theorem!

At this point of time, is there any single problem
in mathematics which could be held as a
show-piece in that it embodies the most difficult
of open problems in mathematics? If such a
thing is at all admissible, the winner would
certainly be the so-called Riemann hypothesis
stated by Gauss’s student, the great Bernhard
Riemann (1800-1840). We do not state it here as
it is not easy to do so in simple terms. However,
the equivalent statement in terms of the Mo6bius
function is the following:

Conjecture. For any constant t > 1/2, there exists
a constant € > 0 such that

Zu(n) < Cx* forallx > 0.

nsx

But I would not advise readers to try proving this!



Exercises

(1)

(2)

Let n be any positive integer exceeding 1.
Show that the sum u(d) over all the divisors d
of n equals 0.

Example: Take n = 6. Its divisors are 1, 2, 3, 6,
and their pu-values are 1, —1, —1, 1, whose sum
is 0.

Let n be any positive integer exceeding 1.
Show that the sum |u(d)| over all the divisors
d of n equals 2 where k is the number of
distinct prime divisors of n.

Example: Take n = 6. Its divisors are 1, 2, 3, 6,
and their |u|-values are 1,1, 1, 1, whose sum

Further reading
i. V Balakrishnan, Combinatorics: Including Concepts Of Graph Theory (Schaum Series)

ii. I Niven, H S Zuckerman & H L. Montgomery, An Introduction to the Theory of Numbers (John Wiley, Fifth

Edition)

www.isibang.ac.in/~sury.

(3)

(4)

is 4. The number of distinct prime divisors of
6is 2, and 22 = 4.
In proving that
max(a,b,c) = a+ b + ¢ — min(a, b)
— min(a, ¢) — min(b, ¢)
+ min(a, b, ¢),
we said: “there is no loss of generality in
assuming that a < b < ¢”. Why is there

‘no loss of generality’ in assuming that
as<b<sc?

Try proving the general relation (4). (It is not
as difficult as it looks!)

B. SURY has been at the Tata Institute of Fundamental Research Bombay from 1981 until 1999. He moved to
the Indian Statistical Institute in Bangalore in 1999. He has always been interested in expository writing and
in interacting with mathematically talented students. He is the regional co-ordinator for the Math Olympiad
in Karnataka and a member of the editorial committees of the newsletter of the Ramanujan Mathematical
Society, and of the magazine Resonance. His research interests are in algebra and number theory. Mathematical
limericks are an abiding interest. He may be contacted at sury@isibang.ac.in. His professional web page is
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PHTs ...Primitive and beautiful

Harmonic Triples
Part-2

Read how the same simple relationship connects the side and diagonals of a
regular heptagon and prove this using the triple angle identities from
trigonometry. Then prove the same result using the little known Ptolemy’s
theorem. And finally, learn how to generate these lesser known triads —
Primitive Harmonic Triples.

SHAILESH SHIRALI

a primitive harmonic triple (‘PHT’) as a triple (a, b, ¢)

I n Part I of this article we introduced the notion of
of coprime positive integers satisfying the equation

1 1 1

a b c

Examples: (3, 6, 2) and (6, 30, 5). We had listed various
geometric and physical contexts in which this equation surfaces.
We had also mentioned that the equation arises in connection
with the diagonals of a regular 7-sided polygon. We start by
studying this problem.

Diagonals of a regular heptagon

Given a regular heptagon, one can draw (}) = 21 different
segments connecting pairs of its vertices. But these 21 segments
come in just three different lengths: its diagonals come in two
different lengths, and then there is the side of the heptagon.
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Let a and b be the lengths of the longer diagonal and the shorter diagonal (respectively), and let ¢ be the
side of the heptagon, so a > b > c (see Figure 1); then the claim is that 1/a + 1/b = 1/c. We provide two
proofs for this claim.

FIGURE 1. Regular heptagon and inscribed triangle; claim: 1/a+1/b = 1/c

A trigonometric proof. The angle subtended by each side of a regular heptagon at the centre of the
circumscribing circle is 360° /7. It follows that in the shaded triangle shown in Figure 1, with sides a, b, c,
the angles are (respectively) 720°/7,360° /7 and 180°/7. For convenience let us denote 180°/7 by 6; then
the angles of the triangle are 48, 26, 6, and the lengths of the sides opposite these angles are, by the sine
rule, proportional to sin 46, sin 26, sin 6 respectively. So the claim that 1/a + 1/b = 1/c is equivalent to

the claim that if & = 180°/7, then:
1 1 1

sin 46 + sin26  sin@’ (1)
and this is what we now establish. Using the well-known double- and triple-angle identities we rewrite
the identity in various equivalent forms:

1 4 1 _ 1 " sin49_sin49
sin46 = sin26  sin6

sin20 ~ sin®
1+2c0529:4c059(2c0529—1)
1+2(2c0529—1)=4c059(2c0529—1)

g 1 30

& 8cos®0 —4cos’0—4cosf+1=0.
Hence the relation 1/a + 1/b = 1/c is equivalent to the following: if 6 = 180°/7, then
8cos®0 —4cos?—4cosf+1=0. (2)

So if we prove (2) we also prove (1). To prove (2) we note that since 768 = 180°, we have the relation
360 = 180° — 46, and therefore sin 36 = sin 46. This yields, via the double- and triple-angle identities:

3sinf — 4sin® 0 = 2sin 260 cos 260 = 4sin6c059(2c052 06— 1),
~3—4sin’0 = 4cos6 (2 cos? 6 — 1) [since sin 8 # 0],
%3 —4(1 —cosza) = 4c039(2c0529— 1),
~8cos®0 —4cos?d —4cosf+1=0.
Thus (2) is established, and hence (1).

A proof using Ptolemy’s theorem. There is an elegant proof of the above equality using ‘pure geometry’,
but it requires the use of a theorem which is not so well known at the high school level (though it ought to
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be better known, as it is such a nice and useful result). The theorem is due to Ptolemy. Here is its
statement: If PQRS is a cyclic quadrilateral, then its sides obey the following equality:

PQ -RS+ PS-QR = PR - QS. That is, the sum of the products of pairs of opposite sides equals the product
of the diagonals. Ptolemy’s theorem can be applied in many kinds of settings and yields many nice results.
(Of course, we first need to identify a suitable cyclic quadrilateral.) (Editor’s note: Ptolemy’s theorem will
be taken up in the ‘Geometry corner’ of a subsequent issue of At Right Angles.)

FIGURE 2. Regular heptagon and a cyclic quadrilateral inscribed in it

Here, we simply apply Ptolemy’s theorem to cyclic quadrilateral PQRS whose vertices P, Q, R, S are chosen
as shown in Figure 2. (The quadrilateral is cyclic since any regular polygon is cyclic,and P, Q, R, S are
vertices of a regular heptagon.) Note that PQ and QR are sides of the heptagon (both have length c), RS is
a ‘long’ diagonal (length a), SP is a ‘short’ diagonal (length b), and its diagonals QS and PR have lengths a
and b respectively. Hence by Ptolemy’s theorem:

bc + ac = ab.

Dividing through by abc, we get 1/a + 1/b = 1/c, as claimed. (Simple, no? But it did require spotting a
suitable quadrilateral ....)

Generation of PHTSs

Now we take up the question of how to generate primitive harmonic triples in a systematic and
mathematically ‘nice’ way. (So we avoid ‘brute force enumeration’) To avoid listing the same solution
more than once (i.e., listing both (a, b, ¢) and (b, a, ¢); clearly if one of these is harmonic, so is the other),
we shall assume right through thata < b.

At the start we draw attention to a feature about PHTs which makes them different from PPTs. In the case
of a Pythagorean triple it is easy to show that if two numbers of the triple are multiples of some number k,
then so must be the third number of the triple; e.g., consider the triple (6, 8, 10). Strangely, this property
does not hold for harmonic triples! A nice example is the harmonic triple (10, 15, 6); here, each pair of
numbers shares a factor exceeding 1, but this factor fails to divide the third number in the triple. The same
is true for the PHT (21, 28, 12). (Nevertheless we call such triples ‘primitive’, because there is no factor
common to all the three numbers.)

Systematic generation of harmonic triples. As with PPTs, there are many ways in which we can track
down the full family of PHTs. We use an approach based on factorization.

We first clear fractions and get the relation c(a + b) = ab. We write this as:

ab—ac—bc=0. (3)
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If we try to factorize ab — ac — bc we find there is a ‘term missing’: the expression is ‘almost’ equal to
(a — ¢)(b — ¢) but not quite. So we put it in the missing term (which is clearly c?) and write
ab — ac — bc + ¢? = ¢2. Factorizing this we get:

(a—c)(b—c) =c (4)

From this we see that a — ¢ and b — ¢ are a pair of complementary factors of c?. (Two factors of a number
are called ‘complementary factors’ if their product equals that number; e.g., 2 and 5 are complementary
factors of 10.) Right away we get a method of generating solutions to the harmonic equation — the
‘method of complementary factors’. We express it algorithmically as follows.

(i) Select any positive integer c.
(ii) Write ¢? as a product u X v of two positive integers, with u < v.
(iii) Leta=c+uandb =c+v.

(iv) Then (a, b, ¢) is a harmonic triple in which a < b. To check that it is harmonic:

1 1_ 1 1 _ 1 N 1
a b c+u c+v c+u c+c*/u
1 u c u ctu 1

c+u+c(c+u) - c(c+u + c(c+u) - c(c+u -

The triple may not be primitive, so we must work out how to ensure this. But it is clear that by selecting
all possible values of ¢, and by factorizing c? is all possible ways, we will get all possible harmonic triples.
Here are two worked examples.

 Let ¢ = 6; then ¢ = 36. Choose the factorization ¢? = 2 x 18. This yieldsa = 6 + 2 = 8 and
b = 6 + 18 = 24, and we get the harmonic triple (8, 24, 6). Note that it is not primitive.

o We again let ¢ = 6, but change the factorization to ¢? = 4 X 9. Now we geta = 6 + 4 = 10 and
b =6+ 9 = 15, and we get the harmonic triple (10, 15, 6), which is primitive.

 Letc = 10, and choose the factorization ¢? = 2 x 50. This yieldsa = 10 + 2 = 12 and
b =10+ 50 = 60. We get the triple (12, 60, 10). Note that it is not primitive.

 Letc = 10, and choose the factorization ¢? = 4 x 25. This yields a = 10 + 4 = 14 and
b =10 + 25 = 35. We get the triple (14, 35, 10), which is primitive.

It appears that for (a, b, ¢) to be primitive, we must choose the factorization c?> = u X v such that u and v
are coprime. This is so and we take up the proof in Part III of this series. (We pose this as a problem for
you, below.) Table 1 gives a list of a few primitive harmonic triples generated this way.

2,2,1), (3,6,2), (4,12,3), (5,20,4),

(6,30,5), (7,42,6), (8,56,7), 9,72,8),
(10,15, 6), (10,90,9), (14,35, 10), (18, 63,14),
(21,28,12), (22,99,18), (24,40, 15), (30,70,21),
(33,88,24), (36,45, 20), (44,77,28), (55, 66,30),
(60,84, 35), (65,104, 40), (78,91, 42), (105,120, 56).

TABLE 1. Some PHTs
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Questions to ponder

(1) We stated above that for (a, b, ¢) to be primitive, we must choose the factorization c?> = uv in such a
way that u and v are coprime. Why should this be so?

(2) InTable 1, note the triples (2,2,1), (3,6,2), (5,20,4), (6,30,5), ... Each of these has the same form.
Find a formula that generates these PHTs, and show that each such triple is primitive.

(3) Add to the list of triples to Table 1 and study the table carefully. Try to find some interesting features
that the triples share. (In Part IIl — the concluding part — of this series we will explore some
properties of PHTs.)

(4) Some PHTs can be ‘realized’ as triangles; for example, there exist triangles with sides 2,2, 1 and
10, 15, 6 respectively. On the other hand there does not exist a triangle with sides 6, 30, 5; nor does
there exist a triangle with sides 5, 20, 4. (Reason: Each of these violates the triangle inequality.) What
extra condition is needed in the factorization method which will yield a PHT that can be realized as a
triangle?

(5) On examining the primitive harmonic triples in Table 1, we notice that the following steps sometimes
yield a triple which is harmonic:

(i) Choose any two integers a and ¢, with a > c.
(ii) Letg = gcd(a,c), and let b = ac/g?.
(iii) Then the triple (a, b, ¢) is sometimes harmonic.
For example, take a = 14, ¢ = 10; then g = gcd(14,10) = 2,s0 b = 14 x 10/4 = 35. We may verify
that the triple (14, 35, 10) is harmonic (indeed, it is a PHT).

On the other hand, take a = 14, c = 12;then g = 2,so b = 14 X 12/4 = 42. But the triple (14,42, 12)
is not harmonic.

When do these steps yield a harmonic triple? Obtain a complete answer.

SHAILESH SHIRALI is Director of Sahyadri School (KFI), Pune, and Head of the Community Mathematics
Centre in Rishi Valley School (AP). He has been closely involved with the Math Olympiad movement in India.
He is the author of many mathematics books for high school students, and serves as an editor for Resonance
and At Right Angles. He may be contacted at shailesh.shirali@gmail.com.
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In October 2012, the Nobel Prize in Economics was awarded to Prof Alvin E. Roth and Prof Lloyd S. Shapley “for the
theory of stable allocations and the practice of market design”. The official citation reads in part as follows (from http://

www.nobelprize.org/nobel prizes/economics/laureates/2012/press.html):

STABLE ALLOCATIONS
- FROM THEORY TO PRACTICE

This year's Prize concerns a central economic problem: how to match different agents as well as possible.
For example, students have to be matched with schools, and donors of human organs with patients in
need of a transplant. How can such matching be accomplished as efficiently as possible? What methods
are beneficial to what groups? The prize rewards two scholars who have answered these questions on a
Journey from abstract theory on stable allocations to practical design of market institutions.

Lloyd Shapley used so-called cooperative game theory to study and compare different matching methods.
A key issue is to ensure that a matching is stable in the sense that two agents cannot be found who would
prefer each other over their current counterparts. Shapley and his colleagues derived specific methods [the
Gale-Shapley algorithm] that ensure a stable matching.

Alvin Roth recognized that Shapley's theoretical results could clarify the functioning of important markets
in practice. He and his colleagues demonstrated that stability is the key to understanding the success of
[some] market institutions. Roth was later able to substantiate this conclusion in systematic laboratory
experiments. He helped redesign existing institutions for matching new doctors with hospitals, students

with schools, and organ donors with patients. These reforms are all based on the Gale-Shapley algorithm,

along with modifications that take into account specific circumstances and ethical restrictions.

[The] combination of Shapley's basic theory and Roth’s experiments and design has generated a
flourishing field of research. This year's prize is awarded for an outstanding example of
economic engineering.

It may not be obvious where the mathematics in this work lies. The theory to which the Nobel citation refers
comes from a paper Shapley wrote in 1962 with Prof David Gale, College Admissions and the Stability
of Marriage. It deals with the problem of a college “having to decide how many and which applicants
to admit to most nearly achieve a desired quota.” The authors define what it means for an assignment of
applicants to colleges to be ‘unstable’ and what it means for a stable assignment to be ‘optimal’. Then they
consider a special case in which there are as many applicants as colleges, and all quotas are unity. This
quickly brings to mind the marriage scenario, in which brides and grooms must be matched. They prove
that, no matter how the members of a community comprising #» men and » women rank potential spouses,
a stable matching does exist. Their proof gives an iterative procedure for finding such a stable matching.

At the end of their paper the two authors write that they have ‘“abandoned reality altogether and
entered the world of mathematical make-believe.” But they add, “It is our opinion that some ideas
introduced here might usefully be applied to certain phases of the admissions problem.” Over the
decades it has become clear that this conclusion is a huge understatement, for the Shapley-Gale
algorithm has been applied to many contexts since then, just as the Nobel citation states. Thus the
work may be regarded as yet another illustration of “the unreasonable effectiveness of mathematics”.

The following article by Devang S Ram Mohan is a whimsical and simplified look at the work of Shapley,
Gale and Roth, loosely based on an expository talk given by Prof Manjunath Krishnapur of the Department
of Mathematics, Indian Institute of Science, Bangalore. Some of you may not be happy at the use of
marriage as a context to discuss a mathematical concept! But we ask you to bear with us and read on ....
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Mathematical make-believe?

Mat(c)h made in
Heaven

DEVANG S RAM MOHAN

Oslo, Norway, and like most others, I only managed to read

the first two paragraphs of any article on the achievements
of these men and women. Being a student of mathematics, and due
to the absence of a Nobel prize in that field (rumoured to be due to
a disagreement between Alfred Nobel and mathematician Mittag
Leffler), I find myself drowning in the technical jargon present
in all such write ups. I was thus circumspect when I saw a notice
announcing a talk - requiring no prior knowledge of the subject -
on the Nobel Prize winning work of Alvin Roth (Economist) and
Lloyd Shapley (Mathematician/ Economist).

The Nobel Prize presentation ceremony recently concluded in

Walking into the packed hall, [ went to the back of the room

and seated myself so as to be able to make a quiet exit in case |
disagreed with the notice on what “no prior knowledge required”
meant. In walked our speaker for the day (henceforth referred to
as Professor), looking pleased at the large turnout. Setting his notes
down on the table he addressed the crowd of eager faces.
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“As I mentioned in my mail inviting you all here, I
am not an expert on this subject. In fact, this talk is
more to celebrate the unprecedented event that I
actually understood the work of some economists
and [ would like to share my excitement with you.
Feel free to ask me as many questions as you wish
and in turn, allow me the freedom to not know the
answer at times!”

I chuckled quietly to myself, pleased at the
informal beginning to the proceedings.

“So,” he began again, “today we’re going to discuss
the work of Roth and Shapley. They were just
recently awarded the Nobel Prize in Economics
for their work on the matching problem. The
basic problem, initially worked on by Shapley
(along with a mathematician by the name of David
Gale) is as follows. Suppose you have n men and
n women in a room, each man has a list which
rates each of the n women according to who

he likes more and similarly, each woman has a
corresponding list of men. Suppose a marriage
consists of pairing up a man and a woman, i.e.,

to each man a unique woman is associated and
vice versa. For those of you with a mathematics
background, a bijection (one to one, onto
correspondence) is set up between the men and
the women. You are allowed to divorce your
spouse if you prefer the husband (correspondingly
wife) of another person to your current partner
and that person also prefers you to their wife
(correspondingly husband).”

He probably sensed our brains furiously trying

to wrap itself around the idea, because he soon
picked up a chalk and wrote on the board:

“M1 can divorce W1 only if W2 is higher than
W1 on his preference list AND W2 prefers him

to M2. Now, the question is, is there a marriage
arrangement such that all n men and women are
matched, and no one wants (or in this case,

is permitted) a divorce!”

“Such an arrangement IS possible, and not just
that, there is an algorithm by which you can get
this ‘stable’ arrangement, but we’ll come to that in
a moment. Let me first give you a slightly different
example, and one where a stable arrangement is
NOT possible. This is the roommate problem.”

“Suppose you have four people A, B, C, and D who
have to share two rooms (two in each room).
Again, they all have their own preference lists and
the conditions by which you can change rooms is
analogous to the divorce scenario in the previous
example. Now take these as your preference lists
and work out that a stable arrangement is not
possible and tell me what the difference between
the two examples is.”

[ whipped out my notebook and began to scribble
furiously on the last page, determined not to lose
track of things.

Person Preference
A B>C>D
B C>A>D
© A>B>D
D C>A>B

[ wrote out the various possibilities:

Possible pairs | Therefore pairs | Preferences | Preferences

in Room 1 in Room 2 Room 1 Room 2

A&B C&D A is happy, C prefers B,
B prefers C D is happy

A&C B&D

A&D B&C

[ thought to myself, “In 1), B and C will be better
suited, in 2), A and B will want to room together
and in 3), A and C will want to share. So there is
no stable arrangement! But what is the difference
between this and the marriage problem?!”
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“Anyone figured out the difference yet?” asked the
Professor.

To my dismay, someone’s hand shot up. “Here

A can choose from B, C, D whereas in the earlier
problem, the men can only choose from the
woman and vice versa. It's a modern day marriage
problem sir!” he quipped.

Happy with the participation of the audience,

the Professor replied smiling, “That’s right! In

the Marriage Problem, the men ONLY rank the
women, and the women can ONLY choose from the
men, which is not the situation in the roommate
conundrum! Okay, so now that we’ve established
that it isn’t a trivial problem that we’re attempting
to understand, let’s think about this algorithm that
our economist friends have come up with.”

The chalk reappeared in his hand and he began to
write again. I fidgeted around, trying to find the
optimum angle to look at the board from, kicking
myself for my seating choice. I managed to find a
position just as he finished his visit to the board.

“Suppose there are 3 men and 3 women, for
simplicity's sake,” he said, now walking up and
down the length of the board, all the while looking
at his audience. “Suppose that each man proposes
to his favourite lady, and each lady considers

all the proposals she receives (possibly none),
scrutinizes them and keeps the one which is
highest on HER list and rejects the rest. Note that
she does not say ‘Yes’ to the one she keeps, she
just tells him ‘you’re in contention, but hold your
horses, I may change my mind yet'. Now all the
men who are depressed at the outright rejection
get another chance, and they propose to their
second favourite woman, and the same procedure
repeats itself.”

He paused as if for dramatic effect before
exclaiming, “This simple technique is the
algorithm!”

There was a murmur around the audience as
everyone spoke to those sitting beside them,
looking slightly comical. Excited and serious is not
an expression that the human face has learnt to
master!
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A faint voice from the back of the room slowly
piped up... mine. “Sir, I can see that it seems to
give a stable arrangement (Refer to Box I), but
how are we guaranteed that this procedure will
ever end, and even if it does, it need not be unique,
right?”

“Good question! To answer the first part, take this
example and try and work it out for yourself and
see that there is nothing that you have done that is
specific to this example.

Man Preference
M1 W1>W3>W2
M2 W1>W3>W2
M3 W3>W2>W1
Woman Preference
Wi M2>M3>M1
W2 M3>M1>M2
W3 M2>M1>M3
(Answer on Page 30)

Here is my reasoning on why the suggested
algorithm yields a stable arrangement:

Suppose M (for man) is not married to W (for
woman) but yet prefers her to his own wife. We
show that W cannot prefer M to her husband.

Since M likes W more than his wife, at some point
during the algorithm, M would have proposed to
W. Since M and W are not together, that means that
W rejected M’s proposal in favour of someone she
liked more! Thus, W must like her current husband
more than she liked M and hence there is no

instability in our arrangement!

Box I: Reasoning for stability of the arrangement

A more detailed yet easily understood explanation
is available in the American Mathematical Monthly
where D Gale and L S Shapley published their
work.” (Refer to Box I1.)



As mathematicians, however, we will never be
satisfied with a proof just because it seems to
work in a particular example. On getting back to
my room after the talk, I looked up the original
paper by Roth and Shapley in the American
Mathematical Monthly. The argument is simple.
First of all, note that eventually (in fact in

n®- 2n + 2 stages), every girl must have received

a proposal.

Suppose some girl hasn’t received a proposal.
Then, since the number of boys and girls are the
same, there must be at least one girl who at that
point has at least two proposals. Thus, she must
reject all but one and the rejected (and dejected)
boys must now propose again. Since no boy can
propose to the same girl more than once, every
girl MUST receive a proposal sooner or later! And
once the last girl receives a proposal, the period
for “courtship” is over and the procedure must
end and each girl must accept the boy she has on

her string!

Box Il: Why the procedure will end!

“As for your second question, this solution may
not be unique! Suppose that in some parallel
universe the women are the ones proposing

and the men accepting/ rejecting. Then, using

the same algorithm we’ll get another marriage
arrangement that might well be different. In fact, if
you notice, the ‘proposing party’ gets a favourable
result as opposed to the other! This is because the
‘proposing party’ is in fact going out there in order
to look for the best possible deal for them while
the ‘accepting party’ is waiting to decide from the
offers they receive! I'm sure there is a life lesson
here somewhere but I'm not here to lecture on
philosophy!”

The room burst into laughter, mostly at the joke,
but partly to express their happiness at having
understood the lecture thus far.

“Many years later, Dr Roth (along with a number
of fellow academics) modified the Gale Shapley
algorithm in different instances and applied the

work to a number of areas such as matching
hospitals and medical students. Just about ten
years or so back, he was asked to sort out the
chaotic New York City High School application
system. As is the case with any great piece of
work, a number of other people have taken

up this idea and tried to make it even more
streamlined. One such case involves the example
of hospital and medical students. A possible aim
is to find a system in which if students lie about
their preferences, it may not yield a solution in
their favour (Refer to Box II1). Another could be
accommodating for married students wanting

to be in the same hospital (or town) as their
respective spouses. It is a case of taking the above
algorithm and making it more attuned to the
eccentricities of the real world.”

[ found myself quite excited, not least because

[ finally had somewhat of a tangible answer to
people asking me what it was I could do after
learning so much maths. My customary “the world
is at my feet” sort of answer was getting stale to
my ears!

“So that was what I wanted to discuss regarding
‘the marriage problem’. Now, if nobody minds,
there is another, unrelated but all the same
interesting topic that I would like to discuss. How
are we doing on time?”

[ glanced at my watch and found that while we
were trying to play match maker, nearly an hour
had passed! Expectedly, everyone vociferously
nodded their assent and we continued.

“Okay, we now discuss a slightly different
problem. Suppose you have a particular town,
and in that town a finite number of schools. Let
this sheet of paper represent the town,” he says
holding a colourful sheet; “let the dots from
which the colours are radiating be the schools,
and let each point on the sheet be a child. Yes,

[ know that’s unrealistic but just bear with me.
Each school has a fixed capacity. The question
now becomes, how does one allocate students
to schools? The natural idea is to use distance:
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students who are closer are preferred to those
further away. You may object and say that a
student may be equidistant from two schools

(or vice versa) but this would form what is called

rn

‘a set of measure zero’.

[ tried to recall my course in measure theory, one
semester ago suddenly felt like an eternity away.
“Measure zero essentially means of negligible size,
like the integers as a subset of real numbers, or,
for the poetically inclined, the stars in the sky,” |
remember my teacher saying and quickly brought
my attention back to the lecture.

“So what'’s happening in this picture is, each school
branches out radially until it fills up its quota,

and if two school ‘kingdoms’ touch, then neither
of them moves any further in that direction but
continue to expand in other directions. Analogous
to the divorce concept in the previous problem, a
child X may change schools if there is a school A
that:

a. Iscloser to him than his present
establishment, B

b. Hasastudent Y who is further away from him

Then, much to the displeasure of Y and his
parents, he will be asked to leave A, and X will be
enrolled in his place. The question then becomes,
is there a stable arrangement for this question?
The answer to this too is Yes, and, anticipating
your next question, this arrangement will be
unique! The reason is that, unlike in the marriage

At Right Angles | Vol. 2, No. 2, July 2013

scenario, here the criteria for the ‘preference
lists’ is the same for both students and schools!
So if men and women find a parameter and an
unambiguous rating system on which everyone
agrees, then we can find a unique stable
arrangement that is at the same time the best and
worst possible for both parties!”

Someone seated in the front row asks, “But sir,
in this particular diagram, if you notice, there are
disjointed bits for some colours. Is it possible for
every colour to be ‘connected’ in some sense?”

“Definitely! This is the next logical question to
wonder about and that is exactly what researchers
wondered. [ won’t go into the details of this;
perhaps we can have another seminar sometime
on this question where we can discuss this
question at length. On this colourful note I will end
today’s lecture. I hope you enjoyed yourself. For
those of you who thought that this was a waste of
your time, hopefully the samosas and tea outside
will make it feel a little more worthwhile!”

Spontaneous applause broke out in the room and
everyone was on his or her respective feet, some
eager to get their hands on the promised samosa,
but more in appreciation of a well-delivered and
more importantly, reasonably well-understood
lecture - a far from common event in the world of
academia!

As I stood waiting for my share of the
refreshments, [ heard a remark, “If this Ph D thing
doesn’t work out, maybe I can use this algorithm
to open my matrimonial site!” While that, 'm
quite certain, wasn’t the aim of Messrs. Roth and
Shapley, I too realised that Maths, or any subject
for that matter, is far more interesting when

you look at the problem at hand in a broader
perspective, rather than being caught up with

whether the expression in line 23 should have a
minus sign or not.

(Answer: M2-W1, M1-W3 and M3-W?2 will live
happily ever after!)
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One particular such “real world eccentricity” is people wanting to subvert the system to obtain results in their favour! That is to say, suppose one man knew\
the preference list of all the others, would changing his own preference list skew the final arrangement in his favour? The answer to this question is far from
obvious, but it is yes! In fact, Roth proved that there is no stable arrangement for which telling the truth is the best strategy for all parties concerned! Let us
take the following case as an example to see how one may influence the final arrangement in their favour.

';'ﬂ_l_' Men True Preference Women True Preference

(S M1 W1>W2>W3>W4 W1 M4>M3>M2>M1

g M2 W1>W3>Wo>W4 W2 M4>M1>M3>M2

k M3 W1>W2>W4>W3 W3 M1>M2>M4>M3
M4 W3>W4>W2>W1 W4 M2>M1>M4>M3

An easy verification shows that the Gale Shapley Algorithm will now yield the following stable result (under the Women propose scenario):
- W2-M4, W3-M1, W4-M2, W1-M3
5 Now, suppose M4 is not the righteous man we believe him to be and he decides to try to subvert the system. Armed with the knowledge of the preference

lists, M4 cunningly changes his list to: W3>W4>W1>W2,

Men New Preference Women True (=New) Preference
;i' M1 W1>W2>W3>W4 W1 M4>M3>M2>M1
b M2 W1 >W3>W2> W4 w2 M4>M1>M3>M2
& M3 W1>W2>Wa>W3 w3 M1>M2>M4>M3
5_ M4 W3>W4>W1>W2 W4 M2>M1>M4>M3
[

The Gale Shapley Algorithm now yields the arrangement given by:
W2-M1, W3-M2, W4-M4, W1-M3

Note now, that as compared to the previous arrangement, M4 is now married to W4 as opposed to W2. Since W4 is higher on his ‘true’ preference list, he
has achieved a more favourable result by giving a different rating list!

The reason that our algorithm is still viable in the real world, despite the large number of miscreants trying to find loopholes in the system, is that the volume i 4
of information required to foresee the possibilities, and to find a way around it is enormous! Consider the High School application system mentioned

earlier. For an applicant to subvert the system, they need to know the preference list of the applicants and (potentially) that of the schools as well. Roth and |
Rothblum proved that provided the information available to applicants is sufficiently limited, he or she cannot gain by submitting a list which reverses the ol
true ordering of two schools (as M4 did earlier).

In non-cooperative game theory, such a situation (one in which each player is assumed to know the equilibrium strategies of the other players, and no
| player has anything to gain by changing only his or her own strategy unilaterally) is known as Nash Equilibrium.

e

Box Ill
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Quiz Question:

Find..

oddman OUt from the following?

ART o MUSIC o POETRY o MATHEMATICS

The answer is ... None of the above!

If you agree with that claim, here are some quotations from mathematicians

who think likewise.

It is impossible to be a mathematician without
being a poet in soul.
Sophia Kovalevskaya

The mathematician's patterns, like the painter's
or the poet's must be beautiful; the ideas, like
the colors or the words must fit together in a
harmonious way. Beauty is the first test: there
is no permanent place in this world for ugly
mathematics. ... I am interested in mathematics

only as a creative art.
G.H.Hardy

Mathematics, rightly viewed, possesses not only
truth, but supreme beauty — a beauty cold and
austere, like that of sculpture, without appeal
to any part of our weaker nature, without the
gorgeous trappings of paintings or music, yet
sublimely pure and capable of a stern perfection
such as only the greatest art can show.
Bertrand Russell

A mathematician who is not also something of a
poet will never be a complete mathematician.
Karl Weierstrass
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By the help of God and with His precious
assistance, I say that Algebra is a scientific art.
The objects with which it deals are absolute
numbers and measurable quantities which,
though themselves unknown, are related

to ‘things’ which are known, whereby the
determination of the unknown quantities is
possible. Such a thing is either a quantity or a
unique relation, which is only determined by
careful examination. What one searches for in
the algebraic art are the relations which lead
from the known to the unknown, to discover
which is the object of Algebra as stated above.
The perfection of this art consists in knowledge
of the scientific method by which one determines
numerical and geometric unknowns.

Omar Khayyam, "Treatise on Demonstration of
Problems of Algebra" (1070)

- Submitted by Srirangavalli Kona
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Presenting two rarely discussed facets of angles
which straddle two different areas. The first part
goes straight into the difficulties of measurement,
and the second part discusses alternative ways of
measuring angles. Read this to bring more to your
class than just the historical need to measure angles

and its applications in real life.

THE EDITORS

angles) might imply that angle and turn measure need not
be introduced to young children. However, there are valid
reasons to include these as goals for early childhood mathematics

The difficulties children encounter (during a formal study of

education. First, children can and do compare angle and turn
measures informally. Second, use of angle size, at least implicitly,
is necessary to work with shapes; for example, children who
distinguish a square from a non-square rhombus are recognizing
angle size relationships at least at an intuitive level. Third, angle
measure plays a pivotal role in geometry throughout school and
laying the groundwork early is a sound curricular goal. Fourth,
the research indicates that although only a small percentage

of students learn angles well through elementary school, young
children can learn these concepts successfully. Source: [1]
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Reading further in [1], one sees a learning
trajectory for angle measurement which starts
with an intuitive angle builder (2-3 years), an
implicit angle user (4-5 years), an angle matcher
(6 years), an angle size comparer (7 years), and an
angle measurer (8+ years).

This article focuses on angle measurement, which
according to the above trajectory should be taught
in the third standard but which continues to give
students difficulties two or even three years later

To most grown-ups, angles present no difficulty.
An angle has a vertex and two arms spread apart
to a certain degree called the ‘measure’ of the
angle; a handy instrument called a protractor can
be used to measure that degree. This definition is
present in many textbooks. It seems such a simple
concept that one cannot imagine anyone having
difficulty with it. Workbooks dedicate a page or
two to an introduction on angles and hurry on

to problems on drawing and measurement and
naming parts of an angle. But ask the students to
measure the angle of an inverted cone and most
of them struggle with orienting their protractors
correctly. Or show two equal angles with different
arm lengths and ask them to say which is greater;
a good many of them will pick the one with the
bigger arms. Or study the situation depicted

in Figure 1, where the student thinks that the
baseline has to be completely covered by the
protractor.

Why do such misconceptions arise? Is it because,
from the beginning, we inundate children’s minds
with words like vertex, line segment, ray and so

on and neglect practical tasks associated with
measurement? Pick up a protractor and examine
it. Is it really easy to use with its mass of lines and
markings (clockwise and counter-clockwise) and
numbers? In fact, it is so complicated that itis a
miracle that children learn to use it at all!

In this article we present a sequence of ideas that
introduces young learners to angles. It is guided
by the belief that anything which relates to the
tangible world of children is going to have better
learning outcomes than otherwise.

Playing with angles. Angles have been defined
from two perspectives — as a ‘shape’ formed

by two rays extending from one point, or as a
‘rotation’ or ‘turn’. Students sometimes think of
these as different concepts. Activities dealing with
angles should encompass both the notions, so that
students appreciate the intrinsic meaning of the
term.

Using a circle of paper folded into quarters (and
therefore with rounded edges), the teacher

can demonstrate how to make a right angle. By
aligning it against different angles, students can
grasp the right way to compare two angles (Figure
2). The device also serves as a rudimentary
protractor. The same shape can be folded or
unfolded to form smaller and bigger angles. After
this, introducing the terms ‘acute’ and ‘obtuse’ is a
matter of association.

An interesting use of this folded shape is to
illustrate invariance of angle with arm length, a
concept even middle-school students sometimes

A20° angle. ..

.ora40° angle?

Figure 1. 20° or 40°? Some students would say it is the latter.
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Figure 3.

grapple with. Hold it at the vertex and tear the
paper (Figure 3). QED!

Another way is to use a string and two straws
(Figure 4). Not only can the invariance of angle
with arm length be demonstrated by moving

the straws along the arms, but one can also
demonstrate the idea that an angle can be formed
‘in the imagination’, with the vertex not visible.
This is a difficulty that students in grades 9 and

10 experience while studying the topic of ‘Heights

and Distances’ in trigonometry.

Figure 4.

Do you have a class with any kinesthetic learners?
Then introduce the notion of angle with the help
of a game: ‘Angle Yoga’. Starting from the zero
position and keeping one arm fixed, call out
‘Right’, ‘Acute’ or ‘Obtuse’ and move the other
arm accordingly. As they do this, children realize
several things, e.g., children with different arm
lengths can show the same angle; there can be
arange of correct angles for acute and obtuse
angles; the fixed arm need not be horizontal or
vertical; angles can be oriented differently. Most
importantly, they learn the art of estimation using
their arms to form an angle.

An interesting way of measuring rotation is to use
the classroom door (Figure 5). The teacher marks
angles on the floor from 0° to 90°, at intervals

of 15° or 30°. This becomes a self-learning tool;
children interact with it and learn. They may not
immediately understand what the degree symbol
is or why some markings are missing. Some may
wonder what happens if the door opens even
further: how does one go about measuring the
angle then?

Figure 5. Source: http://business.outlookindia.com/
printarticle.aspx?267253

(Which makes me wonder: Why are protractors
not made with a slim metal strip that swivels from
the centre and opens up from 0° to 180°7?)
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At this point, terminology such as ray, vertex and
line segment can be introduced. Since students
are familiar with the measurement of length
using the iteration of a unit, the degree as a unit
of measurement of angles should be acceptable to
them. Geogebra is an excellent tool for students to
understand the concept of rotation.

Different ways of measuring angles.

Now that students have learnt to measure angles
using the protractor, they can investigate other
ways of measuring angles and the advantages and
disadvantages of these methods.

Maybe ancient geometers measured angles by
fitting a line segment between the arms at a
standard distance? Let’s see what this leads to.

Suppose that, in order to measure 4A0B, points C
and D are marked, one on each arm, 1 unit length
from the vertex, and segment CD is drawn. Then
the length of CD is taken to be a measure of £A0B
(Figure 6). We call this the chord method to
measure angles.

B
D
o C A
5
o
o C A

Figure 6. Here OC=0D =0D’.
If CD” > CD then 4AOB’ > 4A0B, and conversely

[t can be checked that this approach does preserve
the order relation. In other words, if AA0B < £A0B’
then CD < CD’; and conversely. To see why, we
apply the ‘inequality form of the SAS congruence
theorem’ which states the following (we only
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consider the form applicable to isosceles triangles,
as that is all we need): Let £ABC and APQR be
isosceles, with AB = AC = PQ = PR. Then: if A < 4P,
then BC < QR; and if BC < QR, then 4A < 4P. This
can be proved using pure geometry, but we leave
the proof to you. (Some readers may prefer the
following trigonometric proof. In an isosceles
AABC in which b = ¢, we have a = 2b sin A/2. Since
b is fixed and sin x is an increasing function of x
over the interval from 0° to 90°, it follows that a
increases when 4 increases from 0° to 180°%; and
conversely. The same conclusion is reached if we
use the cosine rule which yields: a® = 2b?(1-cos A),
but now we use the fact that cos x is a decreasing
function of x over the interval from 0° to 180°.)

So the chord method of measuring angles
preserves the order relation. But it fails to pass a
second test which is as important: additivity. To
see what this means, consider a pair of adjacent
angles, 4A0B and 4BOC, which share an arm OB
(Figure 7). Since 4A0C is the union of 4A0B and
4 BOC, and there is no ‘overlap’ between the latter
two angles, it is reasonable to demand that the
measure of 440C should be equal to the sum of
the measures of Z4A0B and 4 BOC. But does this
requirement hold good for the chord measure?

C

0 D A
Figure 7.

Let D, E, F be points on the rays 04, OB, OC such
that OD = OF = OF = 1 unit. By definition, the
chord measures of Z40B, 4BOC and 4A0C are the
lengths DE, EF and DF, respectively. Is it true that
DE +EF = DF? Clearly not. In fact we will always
have DE +EF > DF, for two sides of a triangle are
together always greater than the third side (here
applied to ADEF). So the sum of the measures



of 4A0B and 4BOC is greater than the measure
of 4A0C. We see from this line of reasoning that
the chord measure of an angle fails the test of
additivity.

(Note: The above argument assumes that points D, E, F in
Figure 7 do notlie in a straight line. But how can we be
sure that they do not lie in a line? If we do not provide a
justification for this, then what we have said is incomplete.

Readers are asked to find a proof on their own.)

We do not know whether the ancients considered
chord length as a candidate for angle measure.
The measure they did adopt is the one we use
today, and it possesses both the desired attributes
—the order relation and the additivity property.
It is based on arc length. Here, given an 44A0B, we
mark points € and D, one on each arm, at 1 unit
length from the vertex, and draw the circle with
centre O and passing through € and D. Then the
length of arc CD is taken to be a measure of A0OB
(Figure 8).

Figure 8.

Acknowledgements.

The length of this
arc is a measure

Let us see how additivity is handled by this
definition. In Figure 9 we see £A0B and 4BOC
which share an arm OB. As in Figure 7 the two
angles have no overlap. Their arc measures are
the lengths of arcs DE and EF which are both part
of the circle with radius 1 unit, centred at 0. The
arc measure of £40C is the length of the single arc
DF.Is the length of arc DF equal to the sum of the
lengths of arcs DE and EF? Clearly yes, as the arcs
are all part of a single circle, and arc DF is simply
the union of the two smaller non-overlapping arcs.

Arc measure of an angle is less natural than chord
measure, but one begins to appreciate its elegance
and advantages as one studies it more deeply.

In conclusion we may say that constructing,
interpreting and recognizing shortcomings or
gaps in definitions are all teaching and learning
opportunities where teacher and learner can work
together for greater understanding. It is when we
see the inadequacies of attempted definitions that
we begin to recognize the beauty and economy of
existing definitions.

Figure 9.

This article is the outcome of several absorbing discussions on different platforms. Anupama, a math
resource person at the University Resource Centre of Azim Premji University presented a paper on
‘Angles’ at a seminar, following which there was an animated discussion in the online math learning group,
focusing on misconceptions that students may have regarding angles and how a teacher can address them.
The math learning group gratefully acknowledges the contributions of Dr. Ravi Subramaniam (HBCSE),

Dr. Shailesh Shirali (CoMaC), Dr. Hridaykant Dewan (VBS), Ramchandar Krishnamurthy (APF), Rajveer

Sangha and Jyothi Thyagarajan to this discussion.
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number crossword=3

When the students of DRIK (Dwaraknath Reddy Institutes for Knowlededge)
Patashala, Chittor came across the number crosswords in At Right

Angles, (Issue I-1 and Issue I-2), they got down to solving them with

great enthusiasm. But they ran into unexpected difficulties - not with the
mathematics but with the language used. Though they studied in an English
medium school, understanding the language in which the clues were framed
seemed a challenge! However, when with a little help they managed to solve
the crossword, there was no doubting the fact that number crosswords had
found many enthusiastic converts. Their teachers too realised that here was
an interesting way to improve language as well as mathematical skills.

When this incident was recounted to the creator of the crosswords, Mr
D.D. Karopady, he came up with the interesting suggestion of having the next
crossword created by these very students, which we now present to you for
solution!

1 2 3
4 5 6 o/
8 9
10 11 12
131 14 15
16 17

DRIK Patashala in Chittoor, Andhra Pradesh was established in 2006 with the vision to ensure that
children from urban slums and villages accessed their rights to education. The school now has 84
children chosen from the most neglected circumstances. Experiential learning, exposure trips, lots
of music, dance, art and games are all part of an evolving and empowering curriculum which takes

education beyond schooling for these children.

CLUES ACROSS :

i3,

15.

16.

17.

‘L' IN ROMAN NUMERALS

1221 TIMES ------ ISEQUALTO 111111
7D PLUS 5

15D+7D+12D-25

LAST TWO DIGITS OF THE REVERSED MEASURE OF A
LINEAR ANGLE

THE PRODUCT OF 15D AND THE FIRST DIGIT OF 7D
THE LCM OF 12 AND 30

12D MINUS 30

3D TIMES 3

15D PLUS 5% MINUS 5

CLUES DOWN :

1.

10.

il

W7,

14.

I,

4A MINUS 10

CUBE ROOT OF 2197 PLUS 6

PRIME NUMBER MADE WITH 1 AND 6

LAST TWO DIGITS OF THE MEASURE OF A GROSS
13APLUS 2

4 SQUARED

SUM OF DIGITS OF THE RAMANUJAN NUMBER

4 CUBED MINUS CUBE ROOT OF 4096

LOWEST AND HIGHEST NUMBERS AMONG 2,5,0,3,4,1

FIFTH PRIME NUMBER

38
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The path to mastery

Teacher: Leader,
Supporter, Enabler

... Is never smooth
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SNEHA TITUS

t is often the kind teacher who is supportive and helpful, and ensures compliance
Iusing charm and persuasiveness, about whom effusive essays are written and

who is remembered for the way he or she guided the students towards self-
confidence and often, examination success. But how often does this teacher steer the
student to mastery of the subject?

[ was reminded of the stereotype of the kind teacher when I read an article by

Alan Wigley®” in which he describes two models for teaching mathematics. The

first, the path smoothing model, is one practised by teachers who use ‘the essential
methodology of smoothing the path for the learner’. This is how Alan Wigley describes
this model:

1. The teacher states the kind of problem on which the class will be working.
2. The teacher classifies the subject matter into a limited number of categories and
presents them one at a time.

3. Pupils are led through a method for tackling the problems. The key principle
is to establish secure pathways for the pupils. Thus it is important to present
ways of solving problems in a series of short steps; often only one approach is
considered seriously. Teachers question pupils, but usually in order to lead them in
a particular direction.

4. Pupils work on exercises to practise the methods given aimed at involving learners
more actively. These are usually classified by the teacher and graded for difficulty.
Pupils repeat the processes until they can do so with the minimum of error.

5. Revision: Longer term failure is dealt with by returning to the same or similar
subject matter throughout the course.
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Wigley goes on to explain that most teachers do
provide insights into the concept they are teaching
but under pressure to ‘cover’ the syllabus, they
move on to the serious business of doing the
exercises given. On reading this article, [ was
reminded of my experiences of teaching the
chapter ‘Maxima and Minima’ in grades 11-12. 1
usually introduced the chapter with an interesting
problem, such as the swimmer in distress who
had to be reached in the least possible time by

the life-guard. I would outline the stages of the
solution and explain the theory at each stage. This
would be followed by a series of problems solved
in class, of increasing complexity. Having taught
the chapter for many years, | was aware that
there were some students who found this kind of
problem rather difficult, though they were good at
other sections of the course and had no difficulty
with the topic of differentiation. Where they
stumbled was in understanding what they were
doing in the problem. Typically, the wording of
the problem caused the difficulty: students could
not distinguish between what they were given and
what they had to prove. Once the problem was
unfolded, they sped along the path to the solution.

[ now see that the strategy [ developed was a path
smoothing model. Having recognized the boulder
in the path (not the ‘calculus’ or ‘small stone’!), I
devised a series of steps which worked infallibly
for all maxima and minima problems. I will use a
familiar problem to illustrate the steps: ‘Given a
rectangular sheet of paper 9 inches by 12 inches,
form a box by cutting congruent squares from the
corners, folding up the sides and taping them to
form an open box. To make a box with maximum
capacity, how large should the squares be? Here
was my seven step path:

1. Identify the variable to be maximized or
minimized (in this case, the volume V).

2. Write a formula for the variable
(V=Iength x breadth x height=Ibh).

3. Write the variable in terms of one variable
only (V= x(9-2x)( 12-2x); here x is the side of
one of the squares cut from each corner).

4. Differentiate the variable with respect to
this variable. (In this case find Z—;)
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5. Set the derivative equal to zero and find
the value of the independent variable at the
turning point. (:—; =12 x*-84 x+108 which
yields x = 1.69, 5.30)

6. Check by differentiating again and
substituting these values of x in the second
derivative, which value gives a maximum
volume and which a minimum volume. (At x
=1.69, second derivative is 24*1.69-84< 0,
hence maximum.)

7. Go back to the question and give the specific
information required. (In this case it was the
size of the square cutouts which would be
of side 1.69 cm and area approx. 2.85
square cm.)

Undoubtedly I was smoothing the path to good
performance by providing the students with
such a structured approach. As students used
the seven steps for all the problems in the book,
it appeared that most of them had mastered

the content and that [ had helped them to do so.
There were some who never attained a degree
of comfort with the topic — and whenever they
approached me for a tutorial I would guide them
through more problems with the same algorithm
in my eagerness to prove that it was infallible.
Very few of the students who had problems with
this approach ever got comfortable with the topic,
and they tended to shy away from this section in
examinations.

Alan Wigley goes on to describe two different
approaches to teaching and learning mathematics
and how they seem to lie in watertight
compartments. Here they are:

Exploration

Instruction

Invented methods

Given methods

Creative Imitative
Reasoned Rote
Informal Formal

Progressive

Traditional

Open Closed
Process Content
Talking (pupil) Talking (teacher)

Listening (teacher)

Listening (pupil)




The important point Wigley makes is about how
lessons fall fully into one category or the other.
For example, my lesson would clearly fall into the
second category. Obviously, I needed to heed his
advice to create classes that ensured conceptual
understanding and enabled students to develop
their own procedures. How could I do this in the
time available? I paid heed to Wigley’s advice

to follow the ‘challenging model’ the features of
which are given below:

The teacher presents a challenging context or
problem and gives pupils time to work on it and
make conjectures about methods or results. Often
the teacher will have an aspect of the syllabus in
mind, but this may not be declared to pupils at this
stage.

An important word here is challenge. The problem
must be pitched at the right level, not too difficult,
but more importantly, not too easy.

A second important word is time. It is crucial to give
sufficient time for pupils to get into the problem

- to recognise that it poses a challenge and that
there may be a variety of approaches to it - so that
discussion begins.

Here again the role of the teacher is crucial -
initially, in drawing out pupils’ ideas. The syllabus
may require the learning of more formal processes.
The stimulus for this may be a harder mathematical
problem and may require exposition by the teacher.
However, the pupil will have the context of previous
work to which more advanced techniques can be
related.

A variety of techniques is used to help pupils to
review their work, and to identify more clearly what
they have learned and how it connects together.
Longer term failure is dealt with by ensuring that
any return to the same subject matter encourages

a different point of view and does not just go over
the same ground in the same way. The model

places a strong emphasis on the learner gaining
new insights, and the time required for reflection is
considered to be fully justified.

The actual sub-unit began with group work on
maxima and minima. The class was divided into

groups of 4 and each group was given a problem.
[ deliberately used problems in which the
dependent variable was a function of more than
one variable.

In the initial 90 minute class, each group first
worked on understanding the problem. After
discussing what data the problem gave and
what they were being asked to find out, the
students decided on a method to represent the
problem. At the end of the class, each group gave
a short presentation on the problem: how they
represented it, and how they used the model to
collect data. For example, the group working on
the box problem said that they would actually
construct different boxes by cutting squares of

different sizes from sheets of the given dimension.

The group working on the swimming pool
problem planned to create a simulation, and since
exact rates could not be used, they would make a
table of data using the given rates. For each group
I reiterated the importance of explaining the need
for optimization. Note that this class was spent in
studying the problem and in listening to the other
groups, and not on the solution to the problem.

Much before beginning the unit on maxima

and minima, I had given a lot of emphasis to

the concept of dependent and independent
variable. | ensured that this idea was introduced
while studying functions and revisited while
creating tables and plotting graphs. In the next
class, we used graphing software to understand
the characteristics of turning points when the
dependent variable was plotted against the
independent variable. This software helped
students to understand the reason why rate of
change equals 0 at the turning point. They were
also able to observe the sign change of the first
derivative. Observations and conclusions were
noted down in a worksheet which accompanied
the exercise. In a class discussion following this
exercise, the conclusions were discussed and
noted down formally. This was followed by
simple problems on maxima and minima from
the textbook where the dependent variable was
expressed in terms of one variable only.
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Once the models were ready, the students were
able to see the visual connect between the data
given and the constraints specified. For example,
in the box problem, students were able to
measure and understand that the height of the
box formed was the side of the square. This and
other observations helped them write the volume
in terms of the side x of the square cut out. I found
this was crucial for them to understand that the
given constraints allowed them to express the
dependent variable in terms of one variable only.
With the level of algebra that most students had
drilled into them from high school, this was not

a problem if one simply did a series of intricate
steps that gave the desired result. But making the
models helped students ‘see’ the implications of
the constraints. Also, during the group discussion,
peers observed and questioned and added their
remarks. If a particular group was not able to
proceed, suggestions were invited from other
groups. Rarely did I have to intervene. Based on
the common points from their problem, class
mates were able to give constructive suggestions
which helped the group in distress. Each

group was able to arrive at the point where an
expression for the dependent variable in terms
of one single independent variable allowed a
graph to be drawn. In the next class, we used
these graphs and their learning so far on maxima
and minima to complete the problem using
differentiation and a formal algebraic procedure.
For homework, each group had to do the
remaining groups’ problems.

Working in groups on a concrete or semi-concrete
model helped students understand the problem
and its solution. Certainly, some students still had
doubts. But instead of countering their doubts
with the same algorithm each time, | was able to
use a variety of stimuli to understand as

i Mathematics Teacher MT141 December 1992

well as clarify their doubts. Eventually, I did share

the 7 step plan with them. But this was after they

had done a sufficient number of problems and
they could connect each step to why they did this
step. For the students who were comfortable with
the topic, [ encouraged to experiment with more
difficult versions of the problem. For example,
from an article on the box problem" :-

a. Ifwe use a square sheet of paper, does a com-
mon relationship exist between the side of this
square paper and the side of the square cutout?

b. If the piece of paper we start with is an equi-
lateral triangle, how do we cut the corners so
that we can then fold up the sides and get a box
with an equilateral triangle for base? What is
the relationship between the side of the origi-
nal equilateral triangle and the height of the
lateral sides of the box in order for the box to
have maximum volume?

Conclusion

While resources such as the Mathematics Teacher
give teachers plenty of food for thought, it is the
experience of modifying material to suit our par-
ticular need that makes the journey challenging
and interesting. I was happy because I was able

to incorporate elements of challenge, cooperative
work and creativity, and at the same time pre-
serve the rigor of the mathematics. I was also able
to deliver a differentiated program of learning
based on the student’s mastery of the topic as well
as comfort level with areas such as model making,
simulating, use of graphing software, communicat-
ing and presenting. Finally, students were able to
both reflect and critique on the experience. And
where kindness dictated my 7 step approach, |
was able to teach my students a better under-
standing of problem solving with this exercise. My
thanks to Alan Wigley for having challenged me!

ii ‘Thinking Out of the Box’ Mathematics Teacher Volume 95, No. 8, November 2002

SNEHA TITUS. a teacher of mathematics for the last twenty years has resigned from her full time teaching job
in order to pursue her career goal of inculcating in students of all ages, a love of learning the logic and rel-
evance of Mathematics. She works in the University Resource Centre of the Azim Premji Foundation. Sneha
mentors mathematics teachers from rural and city schools and conducts workshops using the medium of
small teaching modules incorporating current technology, relevant resources from the media as well as
games, puzzles and stories which will equip and motivate both teachers and students. She may be contacted
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How to ...

Solve a Geometry
Problem

Part-2
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Continuing our informal, short self-help guide on solving geometry problems.
In the second part of this series, Ajit Athle describes some strategies which
help in solving geometry problems and demonstrates how these strategies
are used in solving an intriguing problem.

AJIT ATHLE

science of correct reasoning on incorrect

figures.” But drawing an accurate figure is often an
important first step in solving a problem in geometry,
because it may reveal an unsuspected relationship —
perhaps an equality of a pair of angles, or a pair of sides,
or the perpendicularity of a pair of sides; the possibilities
are many. In the same vein the use of colour can help —
marking different parts of the figure in different ways.
Any approach is permissible if it helps you to spot
relationships which are otherwise nearly invisible. In
this edition of ‘Geometry Corner’ we solve a challenging
and intriguing problem.
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An incircle & median problem

In AABC, the median AM to side BC is trisected by
the incircle, i.e., AP = PQ = QM. Find the ratios
AB : BC : CA. (See Figure 1.) Try to solve the
problem before reading on.

N

c 4

FIGURE 1. Problem concerning an incircle and a median

Solution to the problem

Let E, F, G be the points of contact of the incircle
with the sides AB, BC, CA of the triangle (Figure 2).

B

s SIN

FIGURE 2.

A good beginning would be to take BC = 2a, as
that would make BM = MC = a. Let us also take
BF = d. By the equal tangents theorem, BE = d. By

the Power-point theorem,
MF* = MQ - MP, AE* = AP - AQ,

and since AP = MQ and MP = AQ, we have

MF = AE. Let AP = m; then MQ = QP = m, hence
MF? = 2m?, and MF = mv2. But MF = a — d as
well, therefore:

(a—d)? = 2m?. @)}
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Further, as AM is a median we may employ the
theorem of Apollonius to AABC to give:

AB* + AC* = 2 (BM? + AM?)
=2(a® +9m?). (2)

Since AE = MF = a—d, it follows that AB = a. Also,

AC=AG+ CG = AE+ CF
=a—d+2a—d=3a-—2d.

Substituting for AB and AC in (2) and then
combining (1) and (2), we obtain the following
quadratic equation:

5d? — 6ad + a? = 0.

This is easily factorized and solved to yield:

Of these, the former has to be rejected as it is
inconsistent with the given conditions (it would
make MF = 0). Hence, d = a/5 and this yields
AC = 3a — 2a/5 = 13a/5. Therefore:

13a
CA=—,

AB=a,
a 5

BC = 2a,

giving us the required proportions,
AB:BC:CA=5:10:13.

Note how knowledge of the equal tangents
theorem, the intersecting chords theorem (or
“power of a point” theorem) and Apollonius’
theorem helped us to arrive at the answer.



Appendix: Some standard theorems of plane geometry

Equal tangents theorem: Given a circle C and a point P outside the circle, let PA and PB be the two
tangents that can be drawn from P to C. Then PA = PB.

The theorem has a natural extension to three dimensions, with ‘sphere’ taking the place of ‘circle’.

Intersecting chords theorem: Given a circle C, let two chords AB and CD meet at a point P. Then
PA - PB = PC- PD.

Remark. The result is true even if P lies outside the circle, or if one of the chords is tangent to the circle.

The theorem has a natural converse. The value of PA - PB is called the power of P with respect to the circle C.

Theorem of Apollonius: Given a triangle ABC, let D be the midpoint of BC. Then AB* +AC* = 2 (AD2 + BDZ).

The result follows easily from the Pythagorean theorem; see if you can prove it. There are also easy and
natural proofs using vectors; using coordinate geometry; and using trigonometry. The theorem has a
generalization called Stewart’s theorem.

AJIT ATHLE completed his B.Tech from IIT Mumbai in 1972 and his M.S. in Industrial Engineering from
the University of S. California (USA). He then worked as a production engineer at Crompton Greaves and
subsequently as a manufacturer of electric motors and a marketing executive. He was engaged in the
manufacture and sale of grandfather clocks until he retired. He may be contacted at ajitathle@gmail.com.
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MAJOR ADVANCE TOWARDS PROVING THE

‘TWIN PRIMES”

CONJECTURE

—

Who can fail to be charmed by the primes? They are elusive and mysterious in their ways, and hide their
secrets very well. They have been known since ancient times, and many statements can be made about them
that can be understood even by primary school children. Yet, proving these same statements can be a task
that may baffle the mightiest mathematician.

One such is the Goldbach Conjecture - the claim that every even number after 2 can be written as the sum
of two primes; e.g., 50=43+7. It remains unproved, though mathematicians have come very close. Another
is the Twin Primes Conjecture. “Twin primes’ are pairs of primes that differ by 2; for example, the pairs
(3,5), (5,7), (11,13), (41,43) and (101,103). Such pairs thin out as the numbers get larger. Thus there are
205 such pairs below 10,000; 137 pairs in the next block of 10,000 numbers; 125 pairs in the next such
block; then 124, followed by 114; and so on. Studying these data we may wonder whether the source
‘dries up’ eventually; that is, whether no more prime twins (n,n+2) exist for n beyond some point. But this
seems never to happen. Larger and larger ‘twins’ keep getting discovered! Currently the largest known such
pair is:

(3756801695685x2°°°*-1,  3756801695685x2°°°***+1).

Progress in proving the conjecture has been slow but not nil. One curious positive result is the following:
If S is the set of all primes p which are part of a twin prime pair,

S={3,5,7,11,13,17,19,29,31,41,43,59,61,71,73,101,103,107,109,137,139,...},

then the sum X 1/p of the reciprocals of the numbers in S is finite. We even know the sum! - it is roughly
1.902. This theorem implies that the twin primes, even if they are infinite in number, are ‘thin’ in their
distribution (else the sum would not be finite).

The twin prime conjecture may be restated as follows: If the successive primes are written as p,, p,, p., etc
then the difference p,, , - p, between successive primes is less than 3 infinitely many times. If we replace the
‘3’ in this by a larger number, say 5, we get a statement which is weaker than the original one. Denote the
statement “The difference p,,, - p, is less than k infinitely many times” by St(k), so St(3) is the claim that
there are infinitely many twin primes. Note that St(3) implies St(5) but not the other way round; so if we
prove St(5) we will have proved something significant but not quite the Twin Primes conjecture. The larger
the value of k, the weaker the statement; yet, the difficulty of proving St(k) for any k has been so great till
now that it must be considered a significant achievement even if k is quite large.

Precisely such an achievement has been announced by Prof Yitang Zhang of the University of New
Hampshire (USA). He claims to have proved St(k) for k = 70 million! This may seem very far from the Twin
Prime conjecture but it is still a very significant achievement. At the time this note is going to press, experts
seem to be of the view that the proofis correct; indeed, his results have been described as being “of the first
rank.” In a following issue of At Right Angles we shall say more about Zhang’s result.
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Maths Club
A fascination for
counting
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‘ A 7e have been running a Maths Club in our school for a
number of years, for class 7 students. We meet for one
hour every week. We find that at this age, students have

aneed to explore the subject at a greater depth and a great desire to

venture out and make connections with real life applications. They
are also able to appreciate the aesthetic aspects of the subject at this
age. The club is open to everyone irrespective of their mathematical
ability. The aim of the Maths Club is to open up the ways in which
students perceive Mathematics; to help them see the beauty and
power of the subject. One topic that never fails to fascinate the
children is that of counting,. It is accessible for children of all
abilities, and reveals patterns very quickly.
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It is important to provide interesting narratives
and contexts. We start off by talking about

how blind people are able to read. Somebody
suggests that the letters could be raised on a
paper. Somebody disagrees, saying it is not a very
efficient way of reading and would take a long
time if the blind had to feel each letter. At this
point somebody interjects and says that they have
seen Braille books, which consists only of dots.
The children are told that each character in Braille
is represented within a 2x3 rectangle by raising
dots in a particular pattern. There is only a single
way in which each character can be represented.
For example the letter ‘m’ would be represented
as in Figure 1.

Figure 1

Now the children are given the task of finding

out how many different characters could be
represented in this way on a 2x3 rectangular
grid, i.e.,, how many different patterns of dots

and blanks are there. After some time we gather
together and discuss how everyone went about
the task and the difficulties that they encountered.
It is observed that there are a large number of
possibilities and it may not be easy to verify if we
have covered them all. Somebody suggests that

it may be worth doing things systematically: let's
look at the possibilities of 0 dots, 1 dot, 2 dots etc.
separately and then add them all up. There is only
one way of representing the rectangle with zero
dots. For 1 dot we can see that it can be put in

any of the 6 spaces in the rectangle, so therefore
there are 6 possibilities. For 2 dots one needs to
go about it systematically by keeping one dot fixed
in each of the 6 spaces and then adding the 2™ dot
and being careful that there is no double counting.
Here we find 15 possibilities (through systematic
counting we can see that it is 5+4+3+2+1). As we
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write down the possibilities children start noticing
an interesting pattern with reflective symmetry.
Somebody suggests that the case for 4 dots is the
mirror image of 2 dots, only that the dots and
empty spaces are reversed. We display the results
in a table:

lo1 2 3 4 56
Number of ways |1 6 15 20 15 6 1

Number of dots

The final sequence looks like this:

1, 6,15, 20, 15, 6, 1. The total number of
possibilities turns out to be 64, though somebody
suggests that we should ignore the box with zero
dots, as this would be confusing for blind people.
So we settle on 63 possibilities. A question is
posed, whether Braille can work for other kind of
rectangles apart from 2x3. We agree to explore
this question in the following week.

When we meet again, they are shown a blank flag
with four stripes. Then the question, how many
different ways can we colour the flag if we are only
allowed to use the colours black and red, is posed
(it is made clear that none of the stripes can be
left blank). We gather together after five minutes
and discuss how every one is going about the

task. Quite a few remember the previous week’s
suggestion of doing it systematically, starting with
one colour i.e. how many flags with 0 red stripes,

1 red stripe, 2 red stripes, etc. They are then given
some more time to work it out. Those who finish
quickly are given the task of exploring a flag with
5 stripes. As we get together we observe that for
the 4 striped flag we get a reflective pattern:

1,4, 6,4, 1, and the total number of possibilities is
16. Somebody notices that this looks very similar
to last week’s question. We see that in both the
situations there were 2 possibilities —a dot or

a blank in the first one, and red and black in the
second. Discovering this has a powerful effect on
the children since situations with two possibilities
can now be modelled in this manner. The question
raised at the end of the first session can now be
answered. We could use different sized rectangles
for writing Braille; however we would not be able
to cover all the characters with a rectangle smaller
than 2x3. Those who attempted the 5-stripe
problem tell us that there are 32 possibilities.



However it would not be enough for the alphabet
and all the punctuations to be shown. We decide
to put all our findings down and see if we can spot
any more patterns.

s

Five-stripe problem -5 N0 5 i

161520156-

Most are quick at recognising the Pascal’s triangle,
which they have been exposed to earlier. There

is still more interest in this topic and so there is a
promise of more to follow.

In the third session, we explore the number

of paths that can be taken from one end of a
rectangular grid to another, without backtracking.
We start in one corner cell (S) and move either
down or right until we reach the corner cell that

is diagonally across (E). At each step one has a
choice of going down or to the right (see Figure 2).
How many possible paths are there?

Start

End

Figure 2

An interesting pattern emerges if one starts
writing down the number of ways to each cell in
the grid as shown in Figure 3.

Start 1

4 10 20
Figure 3

The children are quick to spot Pascal’s triangle yet
again, and fascinated at the way it turns up in such
unexpected ways. Later when children attempt
expanding binomial expressions with different
indices, they will have great satisfaction in
spotting these patterns again. If time permits, then
one could explore the problem of tossing different
number of coins and looking at the outcome of
heads and tails.

This series of three lessons would have given
them pleasure in spotting patterns and developed
their abilities to spot and deal with similar
situations in counting.

While working on the Braille problem there

are lots of interesting asides one can talk about
depending on the interest level. One can talk
about the biographical account of Louise Braille,
mention that earlier the rectangular grid used
to be larger and this made it difficult to read,
until Louise Braille introduced the standard 2x3
grid which is now used. There is also a separate
language for representing Mathematics and
reading a music score for the blind.

TANUJ SHAH teaches Mathematics in Rishi Valley School. He has a deep passion for making mathematics
accessible and interesting for all and has developed hands-on self learning modules for the Junior School.
Tanuj Shah did his teacher training at Nottingham University and taught in various schools in England before
joining Rishi Valley School. He may be contacted at tanuj@rishivalley.org.

Vol. 2, No. 2, July 2013 | At Right Angles

49



Connections
between Geometry
and Number Theory

In this article we explore connections between specific numbers and geometry,

(]
(9
O
(o}
(7]
i
(O
()]
o

revealing new connections that you, dear reader, might have overlooked or
not have seen before. We do the explorations by using modern technology,
illuminating the strength of technology when working with mathematical

investigations.

Some oddities of the number 7

A well-known fact is that a week has 7 days. “In six days God
made the heaven and the earth, the sea, and all that is in them,
but He rested the seventh-day. Therefore the Lord blessed the
Sabbath day and made it holy.” So the creation story points out 7
as a special number.

The Egyptians had seven original and higher gods; the Pheenicians
had seven kabiris; the Persians had seven sacred horses of
Mithra; the Parsees seven angels opposed by seven demons, and
seven celestial abodes paralleled by seven lower regions. The
seven gods were often represented as one seven-headed deity.
The whole heaven was subjected to the seven planets; hence, in
nearly all the religious systems we find seven heavens.

An important cognitive ability within humans is memory span.
Memory span often refers to the longest possible list of items
(e.g. colours, digits, letters, words) which a person can repeat
immediately after a presentation, in the correct order. Millar
(1956) has shown that the memory span of humans often is
approximately 7 + 2 items.
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According to the theory of biorhythms, a person'’s life is affected by rhythmic biological cycles which affect
one's ability in various domains, such as mental, physical, and emotional activity. These cycles begin at
birth and oscillate in a steady sine wave fashion throughout life; by modelling them mathematically, a
person's level of ability in each of these domains can be predicted approximately from day to day.

The emotional biorhythm model is a 28-day cycle. Here too the number 7 plays a role.

Mathematically interesting connections
The number 7 is prime, and Archimedes discovered its approximate kinship to the circle. He realized that
a circle’s circumference can be bounded from below and from above by inscribing and circumscribing
regular polygons and computing the perimeters of the inner and outer polygons. By so doing, he proved
that

32« 7 < 32

71 7

The first prime which is not 1 more than a power of 2 is 7: thus, 2=2° + 1,3 = 2" + 1, 5=2°+ 1, but 7=2°- 1.

A regular polygon with 7 sides is the first regular polygon which cannot be constructed by traditional
Euclidean methods using straightedge and compass alone. (After 7 the next two such numbers are
9and 11.)

The repeating portion of the decimal fraction corresponding to 1/7 is 142857 (thatis, 1/7 equals
0.142857 142857 ...). We have furthermore that:

142857 x 1 = 142857
142857 x 2 = 285714
142857 x 3 = 428571
142857 x 4 = 571428
142857 x 5 = 714285
142857 x 6 = 857142

The same figures come back in different order! We also see that we can express 1/7 as a geometric sum

defined as
T 1-—k
n=0

where a = 0.14 and k = 0.02. (The sum evaluates to 0.14/0.98 which simplifies to 1/7.)

Remember the ancient Egyptian and Archimedes approximation for  through 22/7 =21/7 +1/7 =
3.142857142857...

Given an integer k, a positive integer x is said to be k-transportable if, when its left most digit is moved to
the units place (i.e., ‘left to right’), the resulting integer is kx.

The integer 142857 is 3-transportable since
428571 = 3x142857.
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Kahan (1976) proved that for k >1 there are no such integers unless k = 3, and the 3-transportable
integers all belong to one of the following two sequences:

142857,142857142857,142857142857142857, ...
285714,285714285714, 285714285714285714, ...

The following strange connection between algebra, geometry and the fraction 1/7 was shown to the
author by the Swedish mathematician Andrejs Dunkels in 1988. Dunkels challenged us to show that if we
combine six overlapping pairs of digits in 142857, and thereby get the following Cartesian points in the
plane (1, 4), (4, 2), (2, 8), (8,5), (5, 7) and (7, 1), these six points lie on an ellipse.

This astonishing fact was first pointed out in 1986 by Edward Kitchen, who encouraged readers of
Mathematics Magazine (problem section) to prove the fact noted above. See Figure 1 constructed with
GeoGebra. The problem is easily solved by Dynamical Geometry software (e.g., GeoGebra or Geometer’s
Sketchpad), but in the October 1987 issue of the magazine the problem was solved by hand by John C.
Nichols, Thiel College, Pennsylvania.

It is well known that five arbitrary points satisfy a conic equation given by
AX* + Bxy + CY* + Dx + Ey + F = 0.

We have six coefficients to determine; but they are determined up to multiplication by a non-zero constant
(that is, if the six numbers are scaled up by a common constant, we get the same conic), which means that
five points determine the conic (provided that no four of them lie on a line; if three of the points lie on a
line, the conic is a union of two lines).

Figure 1: The 1/7 ellipse, where A = (1, 4), B=(4,2),C=(2,8),D=(8,5),E=(5,7),F= (7, 1).
Its equation is: 19x* + 36xy + 41y*- 333x - 531y + 1638 = 0.
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The fact that in the ‘1/7 ellipse’ the sixth point too lies on the conic rests on a symmetric relation that
holds between the six points; specifically, on the fact that 142 + 857 = 999, which yields the following
relation (the significance of this will be seen presently):

(1,4) + (8,5) = (4,2) + (5,7) = (2.8) + (7,1) = (9,9).

What other reciprocals have the same qualities? What will for instance happen if we combine the points
(14, 28), (28,57), (57, 14) with the points (42, 85), (85, 71), (71, 42)? (These are obtained by taking 2-digit
combinations from the decimal expansion of 1/7.) It happens that these six points too lie on an ellipse;

see Figure 2.

150 ]
50

50 ]

T T
150 -100

Figure 2: Variant of the 1/7 ellipse,with A = (14, 28), B= (28, 57), C = (57, 14), etc.
Its equation is: 165104 x*- 160804 xy + 41651 y*- 8385498 x + 3836349 y + 7999600 = 0.

Generalizing the question

The Shippensburg University problem solving group (1987) investigated all ‘period six reciprocals’ (i.e.,
those whose digital forms have a six-digit repetend, like 1/7) and found that reciprocals of 13 and 77 yield
hyperbolas, the reciprocals of 39, 63,91, 143, 273, 429, 693 and 819 yield ellipses, while the reciprocals of
21,117,189, 231, 259, 297, 351,407,481 and 777 do not yield a conic at all.

Mathpuzzle (December 2006) cited Chris Lomont: “Out of curiosity, | found a lot more of these ellipses.
One with more points is the 1/7373 ellipse, 1/7373 = 0.00013653... which gives seven points (0,0), (0,1),
(1,3), (3,0), (3,5), (5,6), (6, 3) on an ellipse. To get 8 points on a single ellipse I found that the fraction
4111/3030303 works. I've yet to find more on a single ellipse. I'm unaware of any proof that can be done,
although integer points on curves are much studied.”(Web reference).

The first 6 pairs of numbers in several decimal fractions lie on an ellipse (e.g. 23/91 or 75/91) or on a
hyperbola (e.g.2/13 or 36/91).
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Further, one might investigate the effect of considering for the coordinates not just single digits but blocks
of digits of various lengths (2, 3, ...). I found that the blocks of length 2 of several reciprocals including 1/7,
1/13,1/77,1/91 and 1/819 yield conics but the blocks of length 2 of 1/7373 (period 8 reciprocal with

7 points on a conic) do not yield a conic. Moreover, blocks of length 3 of the reciprocals 1/7,1/13,1/77,
1/91 yield the straight line y = -x + 999, whereas blocks of length 3 of 1/819 yield the straight line
y=-x+222.

For example blocks of length 2 of 1/13 yield a hyperbola with the equation see (Figure 3; the caption
shows how the coordinates of the points are computed):

-4013x"+ 36478xy - 53117y* - 1408374x + 3452922y + 7074800 = 0.

160
140
120
100
80 1 F
60 1
40

201

T T T T T T T
/ 0 20 40 60 80 100 120 140 160 180

-50 4

Figure 3: Points produced from blocks of length 2 from 1/13 = 0.076923..., yield a hyperbola. Here,
A = (07,69), B = (76,92), C=(69,23), D = (92, 30), E = (23, 07), F = (30, 76)

The centres of the conics of 1/7 and 1/13 are all located at (9/2, 9/2) whereas the centres of the conics
connected with blocks of length 2 are located at (99/2, 99/2).
Analysis: One way to look at digital-conics is that if you have four numbers q, b, ¢, d, then the following
six points necessarily lie on a central conic with centre (d/2, d/2):

(a, b), (b c), (¢ d-a), (d-a, d-b), (d-b, d-c), (d-c, a).

Which particular conic manifests (hyperbola or ellipse) depends on the values of g, b, ¢, d. However it
seems difficult to make a precise correlation. It would be an interesting project to explore this correlation
further.

In the case of 1/7 we have a =1, b =4, ¢ = 2, d = 9 which as noted earlier draws on the fact that 142 + 857 =
999, and in a similar way the following six points lie on a conic:

(14,28), (42,85), (28,57), (85,71), (57,14), (71,42).
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This can be seen as
(a,b), (d-c,d-a), (b,c), (d-a,d-b), (c,a), (d-b,d-c),

with a =14, b =28,c=57,d =99; in this case the coordinates are permuted in two different cycles of
length 3 while we in the previous case had one single cycle of length 6. It is worth noting that in both cases
the centre of the ellipse lies at (d/2, d/2).

If we go back to the example of the 1/7 ellipse, the ellipse can be described as
19(2x-9)*+ 36(2x-9)(2y-9) + 41(2y-9)*= 1224.

Also other 6-tuples of numbers can be used. They do not need to be different; for example,
the number 112332 with (a = b =1, c = 2, d = 4) gives 6 points that lie on the ellipse
3(x-y)*+ (x+y-4)=4.

If pairs of triplets of a period six reciprocal lie on the same line, the slope of the line must be s = -1. This is
so because the first and fourth point have the same coordinates but in reverse order:
x, =y,and x, =y, which gives s =-1.

What happens if we multiply 7 with 13, giving 91? We have: 1/91 =0.010989 ..which yields the points
(0,1),(1,0),(0,9), (9,8), (8,9) and (9, 0). See Figure 4.

Figure 4: The ellipse built on the fraction 1/91

So far we have worked mainly on numbers generating fractions. What if we ask the question the other way
round? For instance, is there a fraction 1/n with a cycle of length eight that yields an ellipse? It is not that
hard to find that 1 / 73 = 0.01369863013 gives eight points (0, 1), (1, 3), (3, 6), (6, 9), (9, 8), (8, 6), (6, 3),
(3, 0). See Figure 5.
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Figure 5: points derived from the fraction 1/73

Once the points are sketched, we see that they lie on an oval with centre (9/2, 9/2). But they do not all lie
on an ellipse, as we find if we ask GeoGebra to fit a conic to the points. But if we omit (9, 8) and (0, 1) we
do get an ellipse that not only goes through the six remaining points, but also through (0, 0), (1, -1), (8, 10)
and (9, 9). We call this a ten point ellipse. The equation is

3(2x-9)*+ 2(2y-9)* - 4(2x-9) (2y-9) = 81. The midpoint is at (9/2, 9/2). See Figure 6.

Figure 6: An ellipse partly derived from the fraction 1/73

In Figure 7, you find an ellipse with 18 outspread integer points on the periphery. [sn’t that beautiful?
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(2,8) (2,8)

o

Figure 7: An ellipse with 18 integer points

Obviously we can go in many different directions. I leave further investigations to the reader.
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Worksheet

L

I1.

Investigate reciprocals of positive integers. Which reciprocals have 6 digit repetends? Make a record of
these.

Focus on one particular reciprocal, say the reciprocal of 7. Here are some sample exercises:

1. Fill in the values for a,b,c so as to give a set of points that lie on a straight line:(142, 857),
(285,714), (428, a), (a, b), (857, ¢). What is its equation?

2. Do the points (1, 4),(4, 2), (2,8), (8, 5) and (5, 7) lie on a straight line?
If they do, what is the equation of the line?

If not, use Geogebra to investigate if they lie on a conic (remember that 5 points lie on a conic if no
set of four points are in a straight line).

If they do lie on a conic, check whether (7, 1) lies on the conic. Explain your finding.

3. Do the reflections of these points in the line y =xlie on a conic? What is its centre, if so?
Substitute values for g, b, c and d and plot the 6 points (a, b), (b, ¢), (¢, d-a), (d-a, d-b),
(d-b, d-c), (d - ¢, a).

e  Whathappensifa=b=c?
e Ifa, b, care distinct, why do these points give a conic centred at (d/2, d/2)?
e Will the same conclusion hold if g, b, ¢, d are two digit numbers?
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Notes added by the Editors

= The facts that (i) 7 is the smallest prime not of the form ‘1 more than a power of 2’ and (ii)
‘aregular polygon with 7 sides is the first regular polygon which cannot be constructed by
traditional Euclidean methods’ are, surprisingly, connected closely. We know this from the
work of Carl F Gauss on the Fermat primes. Specifically, the result proved by Gauss is this:

For odd integers n=3, a regular n-sided polygon can be constructed using ruler-and-compass if
and only if n is the product of distinct Fermat primes. (A ‘Fermat prime’ is a prime of the form
2"+ 1; for example, 3,5 and 17.)

We shall elaborate on this connection in a subsequent article.

= All figures in the above article have been produced using GeoGebra. The ‘conic’ tool of
GeoGebra is easy to use, and we urge the reader to explore further. The syntax is this: if 4,
B, C, D, E are given points, then the conic k defined by them is produced by the following
command: k = Conic (4, B, C, D, E). The graphical interface can be used as well.

= The claim that the points P= (a,b), Q= (b, c),R=(¢c, d-a),S=(d-a,d-b), T=(d-b,d - ),
U= (d - ¢, a) lie on a central conic with centre M = (d/2, d/2) follows from the symmetric
nature of this set of points. Let I" be the conic passing through P, Q, R, S, T. (This conic is well-
defined subject to some mild restrictions on g, b, ¢, d. For example, we should not have
a = b =c.) Observe that PS and QT have the same midpoint, M. Let M be the origin of a new
coordinate system, and let the equation of I in this system be f(x, y) = 0 where fis quadratic.
Using the fact that in this system P and S have the origin as mid-point, as also Q and T, we
argue that the coefficients of x and y in f (x, y)must be zero. Hence f (x, y) must have only
terms in the second degree (i.e., X%, y*, xy). But this implies that if any point lies on the conic,
so does the point whose coordinates are the negatives of the first point. Since R lies on the
conic, this implies that U does too. This justifies the claim.
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Dumble - Door to the
Rescue!

Preamble: Riddles are fun when they are told as stories. The act of exploring the mathematics
behind them can be even more exhilarating. In this article, we tackle one such popular riddle and
deconstruct the mathematics behind it.

Did you notice the pattern at the bottom of pages 37, 39, 41, 43, ..., 57? Here is a composite view:

1 2 3 4 5 6 7 8 9 10
0000000000 -

1
QO 0 0 0 O
000 000
o0 00
00 O @ -
00 00 @ -
90 000 O
00 00000 -
00 0000 :
00 0000 O

The visual is a simple version of a popular puzzle known simply as “100 doors in a row” or “door
toggling puzzle”. Since it does not appear to have a fancy origin story behind it, we came up with a
fable of our own. We call it “The Dumble-Door”:




“Voldemort has captured Potter and suspended him over a cauldron of boiling potion. Dumbledore
watches helplessly as his protégé is being slowly lowered into the magical potion which will turn
him into a raccoon. However, Voldemort will release Potter if Dumbledore is able to solve the
following riddle.

There are 100 doors in a row in Voldemort's castle. All of them are closed. There is one guard who
has the keys to all the doors. But he works in a strange manner. At first he opens all the doors one
by one, all 100 of them. He then walks back to the starting position and this time he visits every
second door and closes them back. The third time, he visits every third door (3rd, 6th, 9th, etc.) and
toggles it (that is, if he finds it closed, he opens it, and vice versa). The fourth time he toggles every
fourth door, and so on. Dumbledore has to tell Voldemort how many doors will remain open in the
end.

The guard is old and frail and Potter is getting closer to the cauldron with each turn of the lever. If
Dumbledore were to wait for the guard to finish his job, he would have no chance at rescuing his
protégé. Is there a way to tell the answer quicker?”

To solve it, let's go back for a while to the grid of dots above. It is clear that out of the 10 dots,

the ones which end up orange are 1, 4, 9, or the first three perfect squares. This pattern of perfect
squares is easily generalizable to N. Thus for the Dumble-Door riddle above with 100 doors, exactly
10 will remain open in the end (102=100 is the largest perfect square less than or equal to 100). But
what is the mathematics behind this?

To find that out, let’s explore the problem a bit more through an activity. Complete the following
table by filling in the sequence of states and turn numbers for each door. Three examples have been
given.

Note for the teacher: When doing this as a classroom activity, extend the table to 30 so that
students have enough data to figure out the pattern.

Door no. State changes (starting from all ‘Closed’) Turn at which state changes
1 Open 1
2
3
4
5
6 Open, Close, Open, Close 1,2,3,6
7
8
9 Open, Close, Open 1,3,9
10

If you have correctly filled in the table, you must have observed the following:

1. A door is toggled at every turn which is a divisor of the door number. Thus: Door 6 is toggled at
the 1%t, 2"9, 3" and 6™ turn. Door 5 toggles only at the 15tand 5™ turn.

2. For a door to end up open, it must be toggled an odd number of times. (Remember that all
doors are opened in the first turn.)

3. Only door numbers with an odd number of divisors will be left open.




The problem now reduces to this:
Which numbers have an odd number of divisors including 1 and themselves?

The Fundamental Theorem of Arithmetic and Law of Combinations now come handy. Consider a
number like 12. We know it has 6 divisors (1, 2, 3, 4, 6, 12). How can we calculate the number of
divisors without enumerating all of them?

Note that 12 can be written in terms of its prime factors as 22x3. Any divisor of 12 can choose from
2's in three ways (none, one or two) and 3’s from two ways (none or one). Thus total number of
ways a divisor can be chosen is 3x2=6.

In general, for a number X=p? g° r*... where p,q.r.... are primes and a,b,c,... are positive integers,
the total number of divisors is

D=(a+1)(b+1)(c+1)...

So D is odd only when each of the factors (a+1), (b+1), (c+1), ... is odd. Thus a,b,c, ... must all be
even. But if they are all even, X is a perfect square!

It follows that any perfect square has an odd number of divisors, and we conclude that only the
door numbers which are perfect squares will remain open.

Hence, resQED!

Dumble-Door to the Rescue is based on a story suggested by Prithwijit De (HBCSE). AtRiA
acknowledges the contribution of Rajveer Sangha who suggested the idea of the running gag and
presented the article in its present visual form.
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Fun Problems

CROMoaC

k-transportable numbers

In the article Connections between Geometry and
Number Theory (elsewhere in this issue of At Right
Angles) the author refers to the notion of
‘k-transportable numbers’ — numbers with the
property that if the left-most digit is shifted to the
right-most end, then the number thus obtained is
k times the original number. He quotes a result
due to S. Kahan that the only integral value of k
exceeding 1 for which such a number exists is

k = 3. We prove this result here (our proof is
different from Kahan’s), and show a surprising
way for generating such numbers. A more apt
name for such numbers than the one given would
be cyclic numbers, and we study this more general
notion in the next section.

Let A = aya,a; ...a, be a k-transportable number,
and let B = a,a; ... a,a,, where k is a positive
integer (k # 1; of course, k < 10). Then we have:

B = KA.

Construct the following two infinite recurring
decimals, whose ‘repetends’ (i.e., the portions that
repeat indefinitely) are the numbers A and B
respectively. That is:

x=0A44A4 ..,
y=0BBB ...
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Both are ‘pure’ recurring decimals. Since B = k4, it
follows that y = kx. Now consider the effect of
multiplying x by 10. Noting the ‘shift in the
decimal point’ we see that this yields

10x = a,.BBB ...,

a number with integer part a,, and recurring
portion the same as that of y. Hence we have:

10x =a; +y.

Since y = kx this yields 10x = a; + kx, and
solving this for x we get:
Tlo-k

Since x is a pure repeating decimal fraction, this
relation puts restrictions on the value of k. Indeed
we have k # 2,4,5,6,8,9. We also have k # 1. So
the possibilities for k are just 3, 7. Of these, k = 7
yields 1/(10 — k) = 0.333 ..., which makes A a
single digit number; this does not work out. Hence
k = 3 (this was Kahan’s result), and x = a, /7.
Since the repetend of 1/7 is 142857, we see that
A = a, X 142857, with a, chosen appropriately.
Remembering that a, is also the left-most digit of
A, we find that a; = 1 or 2; only these two choices
work. Hence A = 142857 or 285714.



Obviously, repeating these blocks of digits will
give more numbers with the same property.
This justifies the claim made in the article
that the only k-transportable integers are the
following:

142857, 142857142857,
142857142857142857, ..,

285714, 285714285714,
285714285714285714, ..,

all of which are k-transportable with k = 3.

Cyclic numbers

The same idea can be used to solve the following:
Find a positive integer with the property that if its
units digit is shifted to its left-most end, the new
integer is twice the original one. Denote the number
by A = aya,a; ...a,,_1a, (so it has n digits), and let
B =a,a,a,a5 ...a,,_1; then B = 2A. Let x, y be
pure recurring decimals defined as follows:

x=0A4A4AA ..
= 0.a1a5a3 ...a,_1Q, Q10503 ...0p_1Qy ...,
y=0BBBB ..

= 0.a,a10,03 ...ap_1 Q10503 ...0p_q ...

Then y = 2x. If we multiply y by 10 we get a pure
decimal recurring decimal whose repetend is the
same as that of x:

10y = a,.a,0,03 ...ap_1Qy, Q10203 ...Ap_1Qy ...

=a, t+x.

Since y = 2x this yields: 20x = a,, + x, and so:
aTL

= 1o

[t therefore remains only to find the repetend of

the fraction 1/19, which we get by simple long
division:

X

1
9° 0.052631578947368421.

If we choose a,, = 1 we get

A = 052631578947368421, which has 0 as its
first digit; so we discard this solution. If we choose
a, =2wegetA =105263157894736842, and we
have a possible answer:

A =105263157894736842.

Please check that 105263157894736842 X 2 =
210526315789473684.

This means that 105263157894736842 is the
smallest possible solution to the problem.

Other choices for a,, yield more solutions, all using
the same repetend. Thus:

a, = 2 yields A = 105263157894736842,
a, = 3 yields A = 157894736842105263,
a, = 4 yields A = 210526315789473684,
a, =5 yields A = 263157894736842105,
a, = 6 yields A = 315789473684210526,
a, = 7 yields A = 368421052631578947,
a, = 8 yields A = 421052631578947368,

a, =9 yields A = 4736842105263157809.

That'’s a lot of solutions!

Given a positive integer N, let f(N) denote the
integer obtained by shifting its units digit to its
left-most end. (Example: f(1234) = 4123.)

A number N with the property that the ratio
f(N) : N is an integer, or a rational number
with small numerator and denominator, is
called a cyclic number. The best known
example of such a number is 142857 (for which
the ratio is 5 : 1). Such numbers are always
associated with the repetends of pure recurring
decimals (and that is what helps in finding
them); but there is more: the numbers also have
some very striking properties. Here is one, which
crucially underlies the phenomenon explored in
the article Connections between Geometry and
Number Theory.

Let p be any prime number greater than 5, and
let the recurring decimal corresponding to 1/p
be computed; it will always be a pure recurring
decimal. Let N be the repetend of this decimal.
The number of digits in N could be odd or even.
If the number of digits in N is even, say 2k, then
let A and B be the k-digit numbers obtained by
‘slicing’ N into two halves. Then the sum A + B is
a number made up only of nines. That is,

A+ B = 10% — 1. Here are three examples of
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this remarkable phenomenon which goes by the
name of Midy’s theorem.

e Ifp="7then1/p = 0.142857,s0 N = 142857
which has an even number of digits (with
2k = 6). Slicing the repetend into two, we get
A =142 and B = 857. Observe that
A+B =999 =10% - 1.

e Ifp=13then1/p = 0.076923,so0 N = 076923
which has an even number of digits (with
2k = 6). Slicing the repetend into two, we get
A =076 and B = 923. Observe that
A+B =999 =103 - 1.

e Ifp=17then 1/p = 0.0588235294117647, so
N = 0588235294117647 which has an even
number of digits (with 2k = 16). Slicing the
repetend into two, we get A = 05882352 and
B =94117647. Observe that
A+ B =99999999 = 108 — 1.

In a future issue of At Right Angles we shall
explore this beautiful theorem and some of its
extensions.

Problems for Solution

Problem II-2-F.1 Find a positive integer with the
property that if its units digit is shifted to its
left-most end, the new integer is 3 times the
original one.

Problem II-2-F.2 Find a positive integer with the
property that if its units digit is shifted to its
left-most end, the new integer is 9 times the
original one.

Problem II-2-F.3 Find a positive integer with the
property that if its units digit is shifted to its
left-most end, the new integer is 1% times the
original one.

Solutions of Problems from Issue-II-1

Problem II-1-F.1 Solve the cryptarithm
EAT + THAT = APPLE.

[tis immediate that A = 1 and T = 9. This yields
E =8andL = 3. Also, P = 0 as the sum of a
3-digit number and a 4-digit number cannot
exceed 11000. This yields H = 2, and now all the
digits have been found: 819 + 9219 = 10038.

Problem II-1-F.2 Solve the cryptarithm
EARTH + MOON = SYSTEM.

The answer for this cannot be unique because the
variables H and N (the two units digits) can be
swapped with no ill effects. Other than this
indeterminateness, however, the solution is unique:
97258 + 4336 = 101594,
97256 + 4338 = 101594.

We leave the derivation to the reader.

Problem I1-1-F.3 Given that IV X VI = SI_X, and SIX
is not a multiple of 10, find the value of IV + VI + SIX.

S_ince_X + I,V it follows t}itl # 1,V # 1. Since
IV x VI >101(I-V) and SIX is a three-digit
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number, it follows that /- V < 10. Since I > 1,
V>1,1+Vweget{l,V}=1{2 3}or{2,4}. The
latter does not yield a solution since

24 x 42 > 1000, but the former does fit:

32 x 23 =736.Sothecodeis:I=3,V=2,S=7,
X = 6,giving IV+VI+SIX = 324+23+736 = 791.
Note that the information that ‘SIX is not a
multiple of 10’ has turned out to be superfluous.

Problem II-1-F.4 Explain why the numbers 1, 121,
12321, 1234321, 123454321, ...are all perfect
squares.

Itis immediate that 1 = 12,121 = 117,

12321 = 1112, and so on. To see why the digits
build up in that pattern simply examine the
underlying long multiplication. For example, here
is111 x 111:

[SENREN S
[ Y

[ N
O N
Wik R Rk R



Of course, the pattern will break after the number
of digits exceeds 9.

Problem II-1-E.5 Explain why the numbers 1089,
110889, 11108889, 1111088889, ...are all perfect
squares.

We observe that 1089 = 332, 110889 = 3332,
11108889 = 33332, and so on. Let us see why this
pattern persists. Let

Then:
A% =(333..3)2 = (111..1) x (999...9)
=(111..1) x (10" - 1)

=111..1000..0 — 111...1

n ones n zeroes n ones

The subtraction clearly yields the number

111..1 0 888..8 9,

(n—-1)ones (n-— 1) eights

which has the stated form.

A ‘Least Sum’ Divisibility Problem

In this short note we solve the following problem
from the Regional Mathematics Olympiad (RMO)
of 2006.

Given that a and b are positive integers such that
a + 13b is divisible by 11 and a + 11b is divisible by
13, find the least possible value of a + b.

Attempting to solve the problem by ‘brute force’
does not seem satisfactory; we need a more
insightful approach. We shall look for a way to
generate pairs (a, b) of positive integers having the
required divisibility properties, and thereby find
the pair with least sum.

Since 11 | a + 13b it follows that 11 | a + 2b.
(Recall that ‘I’ is the symbol for divisibility; e.g., we
have 4 | 12 but 5 { 11.) Similarly, since

13| a+ 11b we have 13 | a — 2b. Let

a+2b=11x,
a—2b =13y,

where x, y are integers. Solving this pair of
simultaneous equations for a and b we get:

11x + 13y _ 11x—13y
a - Tl - TJ
and hence:
33x + 13y
at+b=——"".

4
Since a and b are integers we see that x and y are
either both odd or both even, and their sum must
be a multiple of 4. (For: 4 | 33x + 13y, hence
4 | x+y.) Also, since a > 0 and b > 0 we must have
11x 11x

In any case we must have y < x. (Note that y can
be negative.) Subject to these conditions we list in
Table 1 some of the possibilities for x and y, and
hence for a and b. For each value of x we have
listed all possible values of y that yield integer
values for a and b.

y a b a+b
1 23 5 28
0
3

22 11 33
47 4 51
-1 21 17 38
46 10 56
-2 20 23 43
5 71 3 74
1 45 16 61
-3 19 29 48

N NN OO U W R
N

The table suggests that the least possible value of
a + b subject to the stated conditions is 28. We
justify that this is so by observing that since
—11x < 13y < 11x, the value of 33x + 13y lies
between 33x — 11x and 33x + 11x, i.e., between
22x and 44x, and hence that

11x
T<a+b<11x.

So if x > 6 the value of a + b cannot drop below
33, and if x = 5 the value of a + b cannot drop
below 27% (and hence it cannot drop below 28, as
itis a integer).
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Since we have already achieved a value of 28 with
x = 3 and y = 1, this itself must be the least
possible value.

A graphical view

It is possible to view this problem in graphical
terms. We consider the problem posed in the
following manner: Given that a and b are positive
integers such that 11 | a + 2b and 13 | a — 2b, find
the least possible value of a + b.

In Figure 1 we have sketched thelinesa+2b = 11k
fork =0,41,42, 13, ... (blue, dashed), and the
linesa —2b = 13k fork = 0,41, 42,43, 14, ...
(red, dashed). Points with non-negative integer
coordinates which are part of both families of lines
have been shown as heavy black dots. These
correspond to the pairs (a, b) of non-negative
integers such that 11 [ a + 2b and 13 | a — 2b.

To find the solution with the least a + b value we
imagine the line a + b = d drawn for increasing
values of d (starting with d = 0), advancing across
the plane; we want the least value of d for which the
line passes through one of the heavy dots. It is clear
that the point which this line will pass through is
the one marked ‘Desired point’ in the graph.

From the graph we can also make out the next
smallest value taken by a + b (after 28). It is

clearly 22 + 11 = 33. And the one after that is
21+ 17 = 38.

Remark. The graph reveals an important feature
of the problem which the purely algebraic solution
did not: the fact that the pairs (a, b) of
non-negative integers which satisfy the given
conditions fall on a family of lines with slope —6.
Thus, we have the points (23,5), (22,11), (21,17),
..which lie on the line 6a + b = 143; the points
(47,4), (46,10), (45,16), (44,22), ..which lie on
the line 6a + b = 286 = 2 X 143; and so on.
(These lines have been shown in green.) Therefore
we have the following interesting result which is
far from obvious:

If a and b are non-negative integers such that
11| a+ 2band 13 | a — 2b, then we have
143 | 6a + b.

It is a nice exercise to prove this property
algebraically, without recourse to the graph.

In closing we make the following remark: Graphs
— and pictures in general — often allow us to see
things, to spot properties of various kinds. Once
seen, they may be proved rigorously using algebra.
But the initial seeing (a crucial first step) is far
more difficult to come by if one sticks only to
algebra. Herein lie the importance and power of
diagrams and well drawn pictures.

Figure 1.

At Right Angles | Vol. 2, No. 2, July 2013



Problems for the

Middle School

Problem Editor : R. ATHMARAMAN

Problems for Solution

Problem II-2-M.1
Find all natural numbers n such that the quantity

n* —4n3 + 22n®> — 36n + 18

is a perfect square.
2002)

(China Western Math Olympiad,

Problem II-2-M.2

A railway line is divided into 10 sections by the
stations A, B,C,D,E,F,G,H, 1, ], K. The distance
from A to K is 56 km. A trip along any two
successive sections never exceeds 12 km. A trip
along any three successive sections is at least 17
km. What is the distance between B and G?
(Swedish Math Contest, 1993)

Problem II-2-M.3

In right angled triangle ABC, with BC as
hypotenuse, suppose AB = x and AC = y where x
and y are positive integers. Squares APQB, BRSC

and CTUA are drawn externally on the sides AB,
BC and CA, respectively. When QR, ST and UP are
joined, a convex hexagon PQRSTU is formed. Let k
be its area. Prove that k = 2013.

Problem II-2-M.4

The numbers 1, 2, 3, ..., n are arranged in a line in
such a way that each number is either strictly
bigger than all the numbers to its left, or strictly
smaller than all the numbers to its left. In how
many ways can this be done?  (21-st Canadian Math
Olympiad,1989)

Problem II-2-M.5

If a, b, ¢ are real numbers such that
1/a+1/b+1/c=1/(a+ b+ c), show that the
following is true for any positive integer n:

1 1 1 1

+ c2n+l T

a2n+1 p2n+1 a2n+1 + p2n+1 + C2n+1'

Solutions of Problems in Issue-II-1

Solution to problem II-1-M.1 Two distinct
two-digit numbers a and b are chosen (a > b). Their
GCD and LCM are two-digit numbers, and a/b is
not an integer. What could be the value of a/b?

Let ¢ = GCD (a,b) and d = LCM (a, b); leta = a'c
and b = b'c. Then: (i) a’ > b’; (ii) @', b’ are

coprime; (iii) d = a'b’c; (iv) ¢, a’c, b'c, a’b’c lie
between 10 and 99; (v) a’/b’ is not an integer.
Since ¢ > 10 and a’b’c < 99 we also have: (vi)
a'b’ <10.Soa’, b’ are digits.

Applying (i), (ii), (v), (vi) we find that just one pair
isleft: (a’,b") = (3, 2). It follows that a/b = 3/2.
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We can say more. We have: a = 3¢, b = 2¢, d = 6c.
Since ¢, 2¢, 3¢, 6¢ are two-digit numbers, it follows
that 10 < ¢ < 16. Hence the possibilities for (a, b)
are the following: (30, 20), (33,22), (36, 24),
(39,26), (42,28), (45,30) and (48, 32).

Solution to problem II-1-M.2 The sum of a list of
123 positive integers is 2013. Given that the LCM of
those integers is 31, find all possible values of the
product of those 123 integers.

As the LCM of the numbers is 31, each number
is a divisor of 31. As 31 is prime, its only
divisors are 1 and 31. Hence each number in
the listis 1 or 31. Let the number of 1s in the
list be x, and the number of 31s be y. Then
x+y =123 and x + 31y = 2013. Solving these
equations for x and y we get x = 60 and y = 63.
So the list is:

1,1,1,..,1,1, 31,31,31,...,31,31.
60 of these 63 of these

Solution to problem II-1-M.3 Let a and b be two

positive integers, with a < b, and let their GCD and
LCM be c and d, respectively. Given that

a+ b = c+d, show that: (i) a is a divisor of b; (ii)

a®+b3=c3+d3

Leta = ca’ and b = cb’; then a’, b’ are coprime,
and a’ < b'. As the product of two numbers also
equals the product of their GCD and LCM, we have
cd=a'ch'c,ie,d=a'b'c.Sincea+b=c+dit
follows thatca’ + cb’ = ¢+ ca'b’, i.e.,

a'+b' =1+ a'b'. This leads to:

ab'—a -b'+1=0, L@ -DoB' -1)=0,
hence at least one of a’, b’ equals 1. Since a’ < b’,
it follows that a’ = 1. Hence a = ¢, implying that a
is a divisor of b, and d = b. Both (i) and (ii) now
follow.

Solution to problem II-1-M.4 Let a and b be two
positive integers, with a < b, and let their GCD and
LCM be c and d, respectively. Given that ab = ¢ + d,
find all possible values of a and b.
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Since the product of two numbers also equals the
product of their GCD and LCM we have ab = cd,
hence cd = ¢ + d. This may be written as
cd—c—d+1=1,giving(c—1)(d—-1) =1
Hencec—1=1=d—1,i.e.,,c =2 = d. As the
GCD and LCM are both equal to 2, the numbers
must be 2,2. Thatis,a = 2 = b.

Solution to problem II-1-M.5 Let a and b be two
positive integers, with a < b, and let their GCD be c.
Given that abc = 2012, find all possible values of a
and b.

Leta = ca’and b = cb’. Then a’, b" are coprime.
We are told that abc = 2012. Hence

a'b’'c® = 2012. Now the prime factorization of
2012is 2012 = 2 X 2 X 503. So we have

a'b'c® =2 x 2 x 503, with GCD (a’b’) = 1. Since
2012 is not divisible by a cube larger than 1, it
follows that ¢ = 1, i.e., a, b are coprime. Since

a < b (given), the possibilities for (a, b) are
(1,2012) and (4, 503).

Solution to problem II-1-M.6 Let a and b be two
positive integers, with a < b, and let their GCD and
LCM be c and d, respectively. Given that

d — ¢ = 2013, find all possible values of a and b.

Leta = ca'and b = c¢b’; thend = a'b’c, so the
information given yields: a’b’c — ¢ = 2013, i.e,,
c(a'b’ — 1) = 2013. Hence c is a divisor of 2013.
Now the prime factorization of 2013 is

3 x 11 x 61. Hence the divisors of 2013 are the
following: 1, 3,11, 33, 61, 183, 671, 2013. (There
are 8 divisors.) The possibilities are thus:

c 1 3 11 33 61 183 671 2013
a'b’—1|/2013 671 183 61 33 11 3 1
a'b’ |[2014 672 184 62 34 12 4 2

Each value of a’b’ in the last line leads to possible
values of (a, b).Ifa’b’ = 2 then (a’,b") = (1, 2), so
(a,b) = (2013,4016).Ifa’b’ = 4 then

(a',b") = (1,4),s0 (a,b) = (671,2684).If

a'b’ =12then (a’,b") = (1,12) or (3,4), so

(a,b) = (183,2196) or (549, 732). And so on —
all the possibilities can be thus listed, one by one.



Problems for Solution

Problem II-2-S.1

A circle has two parallel chords of length x that are x
units apart. If the part of the circle included between
the chords has area 2 + 7, find the value of x.

Problem II-2-S.2

The prime numbers p and q are such thatp + g
and p + 7q are both perfect squares. Determine
the value of p.

Problem II-2-S.3
Determine the value of the infinite series
1 1 1 1

32+1 421275243 Tez4a

Problem II-2-S.4

In trapezium ABCD, the sides AD and BC

are parallel to each other; AB = 6, BC = 7,CD = 8,
AD = 17.Sides AB and CD are

extended to meet at E. Determine the magnitude
of « AED.

Problem II-2-S.5

You are told that the number 27000001 has
exactly four prime factors. Find their sum.
(Computer solution not acceptable!)

Solutions of Problems in Issue-II-1

Solution to problem I-2-S.1 Drawn through the
point A of a common chord AB of two circles is a
straight line intersecting the first circle at the point
C, and the second circle at the point D. The tangent
to the first circle at the point C and the tangent to
the second circle at the point D intersect at the
point M. Prove that the points M, C, B, and D are
concyclic. (See Figure 1.)

Two cases are possible: (i) C and D are on the
same side of the line joining the centres of the

circle. (ii) C and D are on the opposite sides of the
line joining the centres of the circle. In both cases
we see that « MCD = «CBAand « MDC = < ABD.
Thus «CBD = «CBA+ «ABD =

£4MCD 4+ «MDC = 180° — « CMD. Therefore
points M, C, B, and D are concyclic.

Solution to problem I-2-S.2 In triangle ABC,
point E is the midpoint of the side AB, and point D is
the foot of the altitude CD. Prove that « A = 2 4 B if
and only if AC = 2ED. (See Figure 2.)
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Figure 1. Showing that M, C, B, D are concyclic
(Problem 1-2-S.1)

Figure 2. Showing that £« A = 2 2 B if and only if
AC = 2ED (Problem 1-2-S.2)

Let F be the midpoint of BC. Therefore EF || AC,
and AC = 2EF. Also in right-angled ACDB, F is the
midpoint of the hypotenuse BC. Therefore

CF = DF = BF.

In ABFD,DF = BF.So «FDB = «FBD = 4£B.
Since EF || AC, « FEB = < A.But

«FEB = «FDB + 4« DFE. Thatis,

£A = «B+ «DFE.Now

£4A=24B < 4«DFE = 4«B <& EF
=ED < AC = 2EF = 2ED.

Solution to problem I-2-S.3 Solve the
simultaneous equations: ab + c+d = 3,
bc+d+a=5cd+a+b=2da+b+c=6,
where a, b, c, d are real numbers.

Adding the four equations we obtain
(a+a)+d)+2(a+c)+2(b+d)=16. (1)
Adding the first two equations we obtain

(b+1)(a+c)+2d=8. 2)
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Adding the last two equations gives
(d+1)(a+c)+2b=8. 3)

Subtracting (3) from (2) yields
(a+c—2)(b—d) =0.Thuseithera+c=2or
b=d.Butifb=dthenbc+d+a=cd+a+b
which leads to 5 = 2, an absurdity. Therefore
a+c=2.Now from (1) wegetb + d = 3. So
¢+ d=>5—(a+ b). Therefore:

3=ab+c+d=ab+5—(a+Db), 4)
2=cd+a+b=2-a)3—b)+a+b
=6+ab—2a—b>b. (5)
These lead to:
a+b—ab =2, (6)
2a+b—ab =4. (7

From (6) and (7),a = 2. Hencec =2 —a = 0.
Thereforeb=2—-a—cd=0andd =3—-b =3.1t
is easy to see that these values satisfy the given
equations. Therefore (a, b, c,d) = (2,0,0, 3).

Solution to problem I-2-S.4 Let x, y, a be positive
numbers such that x*> + y* = a. Determine the
minimum possible value of x® + y® in terms of a.

We have: x6 +y° = (x2+y?){(x* +y*)? —3x2y?} =
a(a? — 3x?y?). Hence x® + y® attains its minimum
value when x?y? attains its maximum value. Since
x? + y? = a, the maximum possible value of x2y?
is (a/2)? = a?/4, with equality attained only when
x =y = ,/a/2. Hence the minimum value of

x° +y%isa(a? —3a%/4) = a®/4.

Solution to problem I-2-S.5 Let p, q and y be
positive integers such that p is greater than q, and
y? —qy +p — 1= 0. Prove that p*> — g% isnot a
prime number.

Suppose p?—q? = (p+q)(p—q) is a prime number.
Then p — q = 1 and therefore y?> — qy + ¢ = 0. So
q=y/0y-D=y+1+1/(y—-D.

As g and y are integers, so is 1/(y — 1). Since

y = 1, it must be that y = 2. Hence ¢ = 4 and

p =q+1=5,giving p? — g% = 9, which is not
prime. A contradiction. Therefore p? — g2 is nota
prime number.



Review of
‘Dimensions’

The animation movie series “Dimensions” produced by Jos Leys,
Etienne Ghys and Aurélien Alvarez is a free-to-download series
available at the website http://www.dimensions-math.org. It is

a highly refined exposition on the notion of dimension and the
ideas centered round it. A beautiful combination of step-by-step
build-up of mathematical ideas, highly creative use of animation
and graphics, accompanied by melodious background music,
makes it a unique exposition, perhaps one of the best expositions
of mathematics available, and accessible to a wide audience. An
appealing device that the authors use is the dramatized narration
by actual mathematicians (present and past).

The series consists of nine chapters. Each chapter is just fourteen
minutes long and builds on the preceding chapters. The series is
densely packed with mathematical ideas and so provides a learning
opportunity for students and teachers as well. Teachers can take
away a wealth of experience on how to convey mathematical ideas.

We briefly describe the contents of each chapter. Chapter 1

starts with dimension two or 2D. In this chapter, Hipparchus
explains that a pair of numbers is enough to describe the position
of a point on the sphere. To describe a point on the earth, two
parameters, namely the longitude and the latitude, are needed.
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This is demonstrated with the help of animation
of a tiny plane travelling on the surface of the
earth. To draw an earth map using a globe on a
table, we draw a ray from the North Pole (NP)
to a point on the globe and locate its point of
intersection with the plane of the table. This is
known as the ‘stereographic projection’ of the
point p onto the plane, and the process is known
as ‘stereographically projecting the sphere onto

the plane’. See Figures 1 and 2.

|

Figure 1. Stereographic projection

The film shows a wonderful animation of
stereographic projections. One can see that the
North Pole has no stereographic projection on
the surface of the table, thus we say that it lies

‘at infinity’. Note that stereographic projection
does not preserve size. But angles between
intersecting lines are preserved, hence directions
are preserved. This gives an intuitive idea of

the property of ‘conformality’ of this projection,
i.e., ‘preserving angles between curves’. The
stereographic projection takes meridians to radii
emanating from South Pole, and parallels to the
concentric circles centered at the South Pole.

Figure 2. Stereographic projection of Earth
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In Chapter 2, M.C. Escher tells us how 2D
creatures on flat 2D surfaces might imagine

3D objects, giving us a hint on how to imagine
4D objects. The idea is to understand the three
dimensions using cross sections on a surface,

as though the 3D surface is passing through the
flat 2D surface of the table (see Figure 3). To
develop an understanding of platonic solids only
through cross sections, we use the stereographic
projections. By counting the number of the faces
and edges and vertices, the creatures on the flat
surface can develop an understanding of the

3D platonic solids. This is well demonstrated in
the movie. This method of using cross sections
helps prepare our imagination to understand the
fourth dimension by using 3D cross sections of 4D
objects.

Figure 3. Cross section of a 3D Platonic solid

In Chapters 3 and 4, Swiss mathematician Ludwig
Schlafli talks to us about imagining objects in

4D. He was one of the first to study geometry

in higher dimensions. He shows us the idea

of representing points in higher dimensional
space by tuples of real numbers using a magic
blackboard. Generalizing the idea of a line
segment (a 1D simplex), an equilateral triangle

(a 2D simplex) and a regular tetrahedron (a 3D
simplex), he obtains a 4D ‘simplex’ on the board.
To get a feel of a 4D object we must see 3D cross
sections of the object like the flat creatures did

in Chapter 2. The key idea is to describe the
number of vertices, edges and 2D and 3D faces to
describe the 4D simplex uniquely. In Chapter 4
we see stereographic projections of 4D simplexes
to 3D space. We see faces blowing up because of
rotation of the simplexes in 4D!



In Chapters 5 and 6, French mathematician Adrien
Douady explains the notion of complex numbers
and geometrical transformation of the plane in an
interesting way.

Figure 4. 3D cross section of a “600" simplex in 4D

The square root of -1 may be regarded as % of

a full turn since multiplication by -1 may be
regarded as a half-turn. Once we understand this
idea geometrically, we can visualize the addition
and multiplication of complex numbers. This is
shown with specific examples.

Combining these two notions - stereographic
projection and complex numbers - it is seen that
complex numbers are sufficient to describe all
points on the sphere except the North Pole.

Figure 5. Sphere as a ‘Complex Projective Line’

In Chapter 6, Douady describes transformations
of the plane - dilations and rotations — using
complex numbers. We see Douady’s photograph
getting dilated and rotated under the
transformations. Similarity transformations are
neatly encoded by complex numbers. We observe
that even after the transformation we recognize
Douady! Small shapes such as eyes and buttons

preserve their shape. This is the geometric idea
behind conformal maps.

The chapter then moves to studying dynamics of
iterations, that is, the effects of applying the same
transformation repeatedly; we see what happens
to sets in the complex plane. This is nicely shown
through animation. The famous Mandelbrot

set is shown, and fractal structures discussed.
One marvels at the beauty of the sets. Through
iteration of simple functions one can produce rich
and intricate structures.

Figure 6. Mandelbrot Set  Figure 7. A Julia Set

In Chapters 7 and 8, mathematician Heinz Hopf
describes the strange and non-intuitive idea of a
‘fibration’ using complex numbers. He shows us
a beautiful arrangement of circles which together
form a 3D sphere.

Figure 8. Hopf fibration

Hopf discovered one of the most important and
well understood fibrations, known today as the
‘Hopf fibration’. It is a smooth arrangement of
circles, no two of which cut one another, forming
a 3D sphere; each circle corresponds to a point in
the 2D sphere.

In Chapter 8 we get a closer look at the Hopf
fibration. The idea of formal proof is presented in
Chapter 9 by mathematician Bernhard Riemann.
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The chapter details can be found at
http://www.dimensions-math.org/Dim_chap_E.
htm. All images in this review are from the site
http://www.dimensions-math.org/Dim_E.htm.

The author has the following suggestions for
teachers. Since the series is densely packed with
ideas, the series can be screened over the period
of nine weeks, each week devoted to a chapter;
the screening may be followed by a discussion
of the main ideas. It may be helpful to pause and
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replay the video to understand the subtlety of
ideas and their highly accurate presentations
by the creators. Teachers will need to study the
background material (found at the link given
above) for the chapter before the screening.

For both students and teachers alike, the series
will be an enjoyable journey to explore the notion
of dimension. It will give a glimpse into how
mathematical ideas are developed.

Dheeraj Kulkarni completed his Ph.D. in Mathematics from the Indian Institute Of Science, Bangalore, in
2012. He is currently visiting Georgia Tech, Atlanta, USA as a Post Doctoral Fellow. Apart from academics
he enjoys sports such as football, cricket, swimming and long distance cycling. He also enjoys listening to
music and going for long walks. He may be contacted at dheeraj.kulkarni@gmail.com.



What Is Your Corner

A Game for

Learning Place Value

Requirements:

Charts, Markers,
Sellotape/Blutack.

The number of participants
varies at each level of the game.

Pre-requisite knowledge for players:

1. Addition: up to 4 digit numbers

2. The value of 10, 100, 1000 and the
relationships between them (10x10=100, etc.)

3. Multiplication by 10, 100, 1000

the Game

Level I

In the mathematics class, place value is considered
one of the ‘hard spots’ for the student as well as
the teacher. I am glad you addressed this issue in
the pullout of Issue II-1 of At Right Angles. Here is
a simple game [ have used to help children practise
their understanding of place value up to four-digit
numbers. The objectives of the game are not just to
review place value but also to experience the learning
of mathematics through physical movement and
joint decision-making. Children move about within
a room in which each corner has an associated place
value, and learn how numbers are read aloud, how
‘exchanges’ are made between corners, and so on.
The details are given below.

Charts labeled ‘Units’, ‘“Tens’, ‘Hundreds’ and ‘Thousands’ are pasted in the four corners of the room

At this level, only 9 students should play to avoid having more than 10 students in a corner. This is
preferable to informing students that there is a cap on the number of students in each corner.

Students move about the room freely and when the facilitator claps, each chooses a corner to go to.

After the students have chosen to stand in the four corners, the facilitator asks: ‘What is the value of
this corner now?’ If there are 5 children in the units corner, their answer should be 5; if there are 5
children in the tens corner the answer should be 50; and so on. The children in each corner should
focus on their corner. Of course the children will think about other corners, but the facilitator should
ask them about their own corner. Answers given should be approved by the observers and the
remaining groups and if the answer is unacceptable, the group which objects should explain their
objection and arrive at the correct answer in discussion with the first group.

At this level the facilitator should help students connect the value they arrive at, to simple
multiplication with powers of ten; e.g., 2x10=20, 4x1000=4000, and so on
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Level 11
e Atlevel Il of the game too, only 9 or fewer students play.

e Asbefore, the participants are in the centre of the room and when the facilitator claps they move to
any of the four corners.

e  After this we ask the students who are observing the game to record what they see in each corner and
to use what they learned from level 1 to write on the black board, as shown in the example below:

Thousands
3 3000
Next, the observers add the values from the four
Hundreds corners and get 3212. The facilitator should have
students play the game several times, changing the
200 roles of the participants and observers. If there are

no cases where there are zero children in a particular
corner, the facilitator should suggest that they create
some such cases so that they can study the meaning

5 o
7 a
N - N

10 of zero in a multiple-digit number.
Forexample, 4000+ 300+ 0+ 2=4302. Itisimportant
that the student verbalises this.
2

Level II1

Once the students are familiar with how to ‘read’ the numbers they have created by standing in corners,
they should then go the ‘opposite’ way. The facilitator calls out a number like 2313, 7486, 2117, 307, 29,
etc,, and students decide how and where to stand to ‘create’ that number. The entire class participates at
this level.

Level IV

e Thislevel is similar to level I, except that a larger number of students should play so that more than
ten students could end up in a corner.

e  Apart from the placard bearing the name of the corner, each corner can be provided with unit squares
in the units corner, strips of 10 squares in the tens corner, shapes measuring 10x10 in the hundreds
corner, and stacks of ten 10x10 squares (held by rubber bands) in the 1000s corner.

e Extra manipulatives are placed in the centre of the room and one student can play the role of an
‘exchange centre’ or a ‘bank’.

e Students can move about anywhere in the room and when the facilitator claps they have to go to any
one corner among the four in the room.

e Ifthere are more than 10 students in any corner, 10 of these students will have to take their 10
manipulatives to the ‘exchange centre’ and exchange it for 1 manipulative of the next higher place.
This is taken by one student to the corner marking the next higher place, and the remaining nine
students go back to the centre of the room.
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For example, if there are 12 students in the tens corner, then 10 of them take their 10 strips and
exchange it for a 10x10 square which one of them takes to the hundreds corner. The remaining 9
students stay at the exchange centre.

Movement to the next higher corner could cause the number there to increase to more than 10 and
this in turn would need a visit to the exchange centre.

If there are more than 10 students in the thousands corner then the facilitator must explain that the
number is referred to as ... thousand; e.g,, fifteen thousand, if there are 15 students in the thousands
corner.

Once this is understood, then the game proceeds as in Level [ and Level II.

= The game should be cooperative and not competitive; if students in one corner do not
know the answer, the facilitator should encourage students from other corners to help
them.

= Thefacilitator should have an element of recording so that some (if notall) configurations
arerecorded (perhaps with stick figures) in the notebooks. Later this can be represented
in terms of squares, strips and grids. It is useful to have a video recording or a series of
photos of the exchange process.

= The game can be noisy! While rapid movement is to be encouraged, students should
discuss ground rules about pushing each other, shouting too much, and a common
signal to ‘Freeze!’

Maran is a resource person with the Azim Premji Foundation (Puducherry Field Institute). He has conducted
workshops on "how to learn and how to teach" using modules and materials developed by his mentor

Fr. Eugine SJ. He has travelled to Sweden and Denmark to support human rights campaigns, and has led a
youth team on this project. Maran may be contacted at maran.c@azimpremijifoundation.org
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The Closing Bracket...

This issue celebrates the life and work of Paul Erdés, one of whose great
gifts was his love of working with people of all kinds. He had the uncanny
knack of drawing out from different individuals just what they were
capable of; choosing just the right level of problem to work on with each
person. But this is also a gift that great teachers of mathematics have. In
the previous issue of At Right Angles we had featured another great
teacher of mathematics, George Pdlya, and had presented his famous
commandments for math teachers. Erdés would probably never thought of
himself as a teacher, yet teaching is what he did through his itinerant
activity.

Recently | was listening to a video-recording of a conversation with the
mathematician Cornelius Lanczos (1893-1974) who was widely regarded
as an outstanding teacher and expositor. (He was originally from Hungary
but moved to USA and later to Ireland. He worked on relativity and served
for a while as an assistant to Einstein.) Some quotes from that conversation
have stayed in my mind. In response to a question posed to him whether
outstandingly good lecturers are born and not made, he described how in
his early years he was actually a very poor teacher because he was
indulging in ‘top-down lecturing’ without putting himself in his students’
shoes. Later when he came to realize how central teaching was to his
existence, he evolved a style of teaching in which he prepared his lectures
fully and wrote them out long hand before the lecture. When the teaching
hour came he could speak freely without his papers, as though extempore,
yet there was deep preparation behind it. It is interesting that Richard
Feynman who too was an outstandingly successful lecturer prepared his
lectures in exactly the same way; indeed, he even prepared his jokes!

In the accounts of these great teachers one sees a common thread: an
ability to put oneself in the students’ place and see the world through their
eyes; an ability and desire to project oneself into the space of the
classroom or lecture hall; a desire to reach out and not be limited by one’s
natural inclinations or by one’s personality; a love of play acting (for good
teaching is also good theatre!); and a willingness to work very hard. And
one sees what a serious business teaching is, and the quality of passion
and hard work it demands.

Where are we placed in our country with regard to all this? Do we
appreciate how serious an enterprise is good teaching? Is it something we
value? Is it a tradition we wish to nurture, to work towards? What will we
be prepared to give up in order to have it?

- Shailesh Shirali
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In the various workshops that | have held with primary school teachers | have often found that
teachers do not spend sufficient time on scaffolding exercises and tend to plunge straight into
formal operations. Often the pace at which they proceed and the text materials they use are not
built up gradually enough to allow time for internalisation. Also the prerequisite knowledge and
skills are not looked into adequately. | hope the suggestions made here help teachers to fill these
gaps and lay a stronger foundation.

Teaching of number operations is intrinsically linked with teaching of numbers. The number
sequence 1, 2, 3, 4, ... is produced by addition by 1: 2 + 1 makes 3, 3 + 1 makes 4. So a child
who has learnt to count implicitly understands the notion of addition as coming together of a
given number with 1 or increasing in quantity by 1. Before one attempts to teach children
formal addition (that is, usage of the symbol +, methods of addition and vertically aligning
numbers using place values) one needs to spend a fair amount of time in strengthening their
number decomposition skills.

PRE-REQUISITE

Ability to recognise the number in a small set of objects (1 to 6) instantaneously, without
resorting to counting; knowledge of the fact that a hand has 5 fingers and both hands together
have 10 fingers.
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ACTIVITY
ONE

DECOMPOSITION OF THE NUMBER 5

A simple activity can be done to teach and strengthen decomposition of 5 through the usage of the five fingers
on the hand. Hold one finger apart from the other four. Let the children say, ‘1 and 4 make 5'. Now hold 2
fingers together away from the rest. Let children say, ‘2 and 3 make 5'. Help them to discover that ‘5 and 0" is
also a decomposition of 5. Let children realize on their own that "1 and 4' could also have been looked at as '4
and 1'. Encourage them to experiment and show different ways of 4 and 1 on one hand. It will help their motor
coordination skills and help them to internalize the decomposition facts of 5 which are crucial in the skills
needed for mental arithmetic.

ACTIVITY
TWO

DECOMPOSITION OF THE NUMBER 10

Decomposition of 10 or number complements of 10 can now be introduced by using both the hands. Hold 1
finger up and keep the others down. Let the children say, ‘1 and 9 make 10’. Now hold 2 fingers up and keep
the others down. Let children say ‘2 and 8 make 10’. Continue in sequence till all combinations are completed
(including “10 and 0 make 10").
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ACTIVITY
THREE

Place 10 clips of one colour in a line as shown. Place
the straw between the first and second clip. Read
off the addition facts: 1 + 9 = 10. Also record it on
the board. Now place the straw between the
second and third clip. Read off the addition fact: 2
+ 8 = 10. Record it under the previously written
fact. Continue in this manner till you reach 9 + 1 =
10. It would be interesting to see if any of the
children ask what would be recorded if the straw is
placed after the last clip or before the first one. Tell
them that it would be read as 10 + 0 = 10 or 0 +
10 = 10 as the case may be.

Now show the pattern as recorded on the board.

0+10=10 3+7=10 6+4=10 9+1=10
1+9=10 4+6=10 7+3=10 10+0=10
2+8=10 5+5=10 8+2=10

Various questions can be posed to bring out properties.

1. Whatis happening to the numbers on the left side?

2. Whatis happening to the numbers on the right side?

3. Is4 + 6thesameas6 + 4? Are there any other pairs like that?

GAME

Game 1: MAKE 10 Materials required:
Objective: Reinforce complements of 10. = Two sets of Number Flashcards

Children play this game in pairs. Each child has a number set 1 to 9. One child shows a number (say 6) and the
other child must quickly show its complement (4).
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GAME

Game 2: SNAP 10

Objective: Instant recognition of complements of 10.

Materials required:

= Three sets of Number Flashcards, 1 to 9
(three extra flash cards of 5 will be
needed)

Children play this in fours. The flash cards are mixed up and placed in one pile upside down so that the
numbers are not visible. By turns, each child takes the top card off the pile and places it open in front of
everyone. If the next card is not a complement of the previous one, the new card is placed on the open card. If
the next card removed from the closed pile is a complement of the card on top of the opened pile, whoever
says 10 first gets the set of 2 cards. The game continues till all sets are removed. Whoever gets the maximum

number of sets is the winner.

ACTIVITY
FOUR

Fingers on the hand become an aid again to help
children master adding5+ 1,5+ 2,5+ 3,5+ 4,5
+ 5. The teacher again needs to help the child use
his knowledge of the fact that a hand has 5 fingers
(so he doesn't count them all over again) and do
forward counting from 6 onwards. In fact the child
should be in a position to quickly recognise
combinations of the 5 fingers on one hand along
with fingers on the other hand as 6, 7, 8, 9 and 10.

The usage of hands and fingers is an excellent aid in
teaching number decomposition of 5, 10 and
addition facts up to 10. But | often see children
extending this one to one correspondence for

MASTERING ADDITION OF 5 TO NUMBERS FROM 1 TO 5

additions like 948 and going over fingers repeatedly
and thus getting muddled. Sometimes teachers also
encourage students in using the finger segments for
adding bigger numbers. While it helps in solving the
problem this does not lead to enhancement of
further learning strategies. It is imperative that the
teacher helps the child to use number decomposition
skills and rounding numbers to 10 to arrive at the
answer. Through repeated exercises, by discovering
patterns in numbers addition rules can be discovered
and internalised. Addition facts (1+1 to 9+9) can be
thus committed to memory.
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ACTIVITY | CREATION OF 1 TO 10 ADDITION TABLE
FIVE TO HELP LEARN ADDITION FACTS

This is an important chart which every child should be encouraged to make and a larger one should be
displayed in the class while children are learning additions.

Let the children write all the numbers 1 to 10 in the top row of the chart and all the numbers 1 to 10 in the
first vertical column. Write + sign in the left most top corner. Tell the children to fill the addition table row wise
with the corresponding sum.

e 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 13
4 5 6 7 8 9 10 11 12 13 14
5 6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 11 12 13 14 15 16
7 8 9 10 11 12 13 14 15 16 17
8 9 10 11 12 13 14 15 16 17 18
9 10 11 12 13 14 15 16 17 18 19
10 11 12 13 14 15 16 17 18 19 20

What are the ways in which we can break down these facts into manageable sub-goals?
1. Addition by 1 is simple (the succeeding number), so is addition by 2 (skip one number)

2. Addition of numbers 1 to 5to 5 (i.e.,, 5+1, 5+2, ..., 5+5)

3. Addition of numbers 1 to 10 to 10 (i.e., 10+1, 10+2, ..., 10+10)

4. Addition of doubles (i.e., 1+1, 242, 3+3, ..... ,94+9)

5. Addition of numbers differing by 1 (i.e., 7+6 can be done as 6+6+1 or 7+7-1)

6. Number pairs which add up to 10 (complements of 10)

7

. Adding numbers to 9 by regrouping (using the fact that 9 is 1 less than 10, so 9+7 to be
viewed as 9+1+6, i.e.,,104+6)

8. Adding numbers to 8 by regrouping (using the fact that 8 is 2 less than 10, so 8+6 to be
viewed as 84+2+4, i.e,, 10+4).
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ACTIVITY
SIX

REGROUPING

Give the child two number cards, say 8 and 7. Let the child pick up 8 straws and 7 straws and place them
separately as two piles, lined up. Ask the child to count the number of straws in the left pile and move a few
from the right pile to have 10 in the left pile. Now let the child say ‘8 and 7 is now 10 and 5’, so ‘8 and 7 is 15"
Repeat this activity with various other number pairs to gain mastery over regrouping to 10 and adding 10 and
some other number.

While the child is doing this activity the teacher needs to keep a watch on the following aspects.

1. Does the child recognise instantly the number of straws he has to move from the right side? (That is, check
for mastery of decomposition facts of 10.)

2. Once he moves the straws does he recount the pile of 10? (That is, check for mastery of conservation
principle.)

3. Is he able to quickly combine 10 and a number and give the right answer?

ACTIVITY
SEVEN

REGROUPING ON A NUMBER LINE

Additions by regrouping should also be

shown using a number line to help the 8 TR

hild in building visualisation skills (10 and

chi .|n ui |ngV|sua|sa|on5|s(. an g + 2 + B o
multiples of 10 are to be prominently

displayed on the number line).
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ACTIVITY
EIGHT

Use straw bundles, tens strips and a number line
to show additions of different multiples of tens
(20430, 50420, etc). Ask one child to pick up 2
tens or 20, and another to pick up 4 tens or 40, and
ask for the sum. Use the words 2 tens and 20
interchangeably so that children recognise their
equivalence. It must be clearly established that only
like ones can be grouped together. While doing
additions of multiples of ten, intersperse with
questions which require summing of tens and ones.
Ex. Take 2 tens and 3 ones. How much is that?
Children must learn to pay close attention to the
words ‘tens’ and ‘ones’. Place value needs to be
emphasised while teaching all the operations.

ACTIVITY

ADDITIONS OF MULTIPLES OF TENS

Complements of 100 in terms of tens: At this point
it is also useful to focus on the combinations of
multiples of 10 which sum up to 100. Questions
can be framed in terms of “I have 3 tens, how many
more tens to make 100?" Child must have a clear
understanding at this point that 100 is the same as
10 tens. Their knowledge of complements of 10 is
applied here as well and will be applied later in
finding complements of 1000 in terms of multiples
of 100. (Ex. 1000 = 8 hundreds and 2 hundreds.)

ADDITION OF 3 SINGLE DIGIT NUMBERS

NINE

While adding three single digit numbers (74+5+3), the usual method to follow is the left to right sequential
approach. Add the first two numbers and then add the third number to the sum. It will be good to also
encourage children to look for a pair which sums easily (complements of 10 or doubles etc, and then add the
third). This helps children to look at numbers in a flexible manner and use their understanding of arithmetic

laws and properties.
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ACTIVITY
TEN

This can be easily demonstrated using tens and ones
materials placing them under one another as shown
and recording it with place value. As mentioned, the
teacher needs to constantly bring it to the child’s
attention that ones are being added to ones and
tens are being added to tens. It is important that in a
problem like this, the child does not read it as 4 + 2
=6and 1+ 2 =3:

ADDITIONS OF TENS AND ONES WITH TENS
AND ONES WITHOUT REGROUPING

: v
S b0 t Z
< s sy e
30 4 6

It should be read as 4 ones and 2 ones make 6 ones;
1 ten and 2 tens make 3 tens.

To reinforce this it is also good to write a few
problems initially in expanded form.

T U
2 4 = 20+4
35 = 30+5

Problem exercises should initially contain visuals.
Also, let children use materials (tens and ones) till
they gain confidence and drop usage of aids on their
own.

Oral arithmetic: While doing additions mentally we
often work out left to right, that is add tens and then
ones. It is important that we allow children to use
their own methods and not restrict them in any way
as long as the methods being used are logical.
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ACTIVITY
ELEVEN

Additions of the kind 14428 require regrouping of
ones into a ten and recording the result
appropriately. Let the child pick up tens and ones
corresponding to 14 and place it on the place value
card. The number should also be recorded using
tens and ones as headers. The child then picks up
material corresponding to 28 and places it in the
second row of the place value card. The second
number is also recorded now. Now the child counts
the ones and exchanges 10 ones for a ten and the
teacher places it on the top in the place value card
as shown. At this point the teacher needs to show
the correspondence between the recording norms
that are followed for addition. In the regrouped
ones the ten is indicated by 1 on the top in tens
place, and the ones are written underneath.
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ADDITIONS OF TENS AND
ONES WITH REGROUPING

This whole sequence has been spelled out to make
the reader see the importance of matching the
activity to the writing process. Often | find that
activities are performed independently and writing
is taken up later. The child does not necessarily see
the connection between actions performed in the
activity and the process being followed while
recording. Activities should be made explicit by
verbalizing every action and matching it with
writing, it is like a running commentary.



ACTIVITY
TWELVE

WITH REGROUPING

A similar procedure needs to be followed while
teaching additions of 3 digit numbers. The place
value kit (hundreds, tens and units) needs to be
used. However it is important to initially teach
regrouping in one place only (say units to tens) e.qg.,
135+248, and the second stage will then be
regrouping tens as hundreds, e.g., 246+172. At
the third stage one must carefully introduce
regrouping in both the places, e.g., 247 +386.
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ADDITIONS OF 3 DIGIT NUMBERS

Adding 7 and 6 units gives 13 units, which is
regrouped as 1 ten and 3 units. 3 units is recorded
under the units place and the regrouped 1 ten is
recorded in the tens place, at the top.

Adding 1 ten, 4 tens and 8 tens gives 13 tens,
which is regrouped as 1 hundred and 3 tens. 3 tens
is recorded under the tens place and the regrouped
1 hundred is recorded in hundreds place, at the top.

In a similar manner additions
with regrouping can be done
for four-digit numbers. Here
too it is advisable to first
practice with problems which
involve regrouping in just one
place, followed by regrouping
in two places, and then by
regrouping in all the three
places.

WORD PROBLEMS AND CHALLENGES

A conscious effort must be made to discuss all
the three addition situations:

e Combining two groups. Example: 20 children in
class 1; 25 children in class 2; how many
children in class 1 and 2 together?

* Increasing a number by another quantity.
Example: 15 children in the bus; 4 more get in;
how many children are there now?

* Finding the required amount to raise a given
number to a higher number. Example: 12
children in the group; 8 pencils; how many
more pencils are needed so that each child has
one?
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Also, one needs to use different contexts and
different words which require the numbers to be
totalled. Children should also become familiar with
the word sum, that it denotes the answer to the
numbers which have been summed.

It is good to raise the level of challenge for students
by giving ‘missing number" additions. One can build
up problems of this kind in a graded manner as

below, where the blanks (or empty squares) need to
be filled by digits appropriately.

« 1 +403=529
e 267+ 3 =400
« 4 41257 =6032

A wide variety of such problems can be devised.

GAME

Game 3: ADDITION MATRIX BOARD

Make a 5 x 5 matrix board with squares of size 2 x 2
c¢m. Enter the numbers 6 to 10 in random order along
both axes as shown. Also make 25 square cards (size 2
x 2 ¢cm) and write the sums on these cards.

Before the game can begin, all the small cards are laid
face downward and the time noted. Each player in
turn turns the small cards face up one at a time and
places them in the correct square as quickly as
possible. The time taken to fill the board is noted. The
other players can challenge any error and each
wrongly placed card earns a five second penalty. The
player completing the matrix in the shortest time is the
winner.

10




Call for Articles

At Right Angles welcomes articles from math teachers, educators, practitioners, parents
and students. If you have always been on the lookout for a platform to express your
mathematical thoughts, then don’thesitate to getin touch with us.

Suggested Topics and Themes

Articles involving all aspects of mathematics
are welcome. An article could feature: a new
look at some topic; an interesting problem; an
interesting piece of mathematics; a connec-
tion between topics or across subjects; a
historical perspective, giving the background
of atopic or some individuals; problem solving
in general; teaching strategies; an interesting
classroom experience; a project done by a
student; an aspect of classroom pedagogy; a
discussion on why students find certain topics
difficult; a discussion on misconceptions in
mathematics; a discussion on why mathemat-
ics among all subjects provokes so much fear;
an applet written to illustrate a theme in
mathematics; an application of mathematics
in science, medicine or engineering; an algo-

rithm based on amathematical idea; etc.

Also welcome are short pieces featuring:
reviews of books or math software or a
YouTube clip about some theme in mathemat-
ics; proofs without words; mathematical
paradoxes; ‘false proofs’; poetry, cartoons or
photographs with a mathematical theme;
anecdotes about a mathematician; ‘math from
the movies'.

Articles may be sent to :
AtRiA.editor@apu.edu.in

Please refer to specific editorial policies and
guidelines below.

Policy for Accepting Articles

‘At Right Angles' is an in-depth, serious magazine on
mathematics and mathematics education. Hence articles
must attempt to move beyond common myths, perceptions
and fallacies about mathematics.

The magazine has zero tolerance for plagiarism. By
submitting an article for publishing, the author is assumed to
declare it to be original and not under any legal restriction for
publication (e.g. previous copyright ownership). Wherever
appropriate, relevant references and sources will be clearly
indicated in the article.

‘At Right Angles' brings out translations of the magazine in
other Indian languages and uses the articles published on The
Teachers' Portal of Azim Premji University to further
disseminate information. Hence, Azim Premji University

holds the right to translate and disseminate all articles
published in the magazine.

If the submitted article has already been published, the author
is requested to seek permission from the previous publisher
for re-publication in the magazine and mention the same in
the form of an ‘Author's Note' at the end of the article. It is also
expected that the author forwards a copy of the permission
letter, for our records. Similarly, if the author is sending
his/her article to be re-published, (s) he is expected to ensure
that due creditis then given to ‘At Right Angles'.

While ‘At Right Angles' welcomes a wide variety of articles,
articles found relevant but not suitable for publication in the
magazine may - with the author's permission - be used in
otheravenues of publication within the University network.
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For Teachers | Teacher Educators | Researchers | Education Administrators
& everyone passionate about education.

Learning Curve

A theme-based publication focussing on topics of current relevance to the education sector
Earlier issues of the Learning Curve can be downloaded from
http://www.azimpremjiuniversity.edu.in/content/publications

To find out more or order a printed copy of the earlier issues or the upcoming one, e-mail your
postal address and the issue number to learningcurve@azimpremjifoundation.org

At Right Angles

A resource for school mathematics

Earlier issues of At Right Angles can be downloaded from
http://www.azimpremjiuniversity.edu.in/content/publications

To find out more or order a printed copy of the earlier issues or the upcoming one, e-mail your
postal address and the issue number to AtRightAngles@apu.edu.in

Language and Language Teaching

A publication focusing on issues and practices relevant to language teaching

Earlier issues of Language and Language Teaching can be downloaded from
http://www.azimpremjiuniversity.edu.in/content/publications

To subscribe or find out more write to jourlit@gmail.com

Teacher Plus

A monthly magazine packed with ideas and addressing the concerns of the practicing teacher

Teacher Plus can be accessed online at http://www.teacherplus.org/.
To subscribe or find out more write to editorial@teacherplus.org

Exchanging Experiments and Experiences in Education

°® The entire issue can be freely downloaded from:
At RI t http://azimpremyjiuniversity.edu.in/content/publications

An es For a print copy, kindly send a mail giving your complete postal address and institutional
AT affiliation to the following e-mail ID: AtRightAngles@apu.edu.in
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