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Lurking within any triangle …

Morleý s
Miracle – Part III

…is an equilateral triangle

This article concludes the three-part series begun in the
July 2014 issue, wherein we study one of the most celebrated
theorems of Euclidean geometry: Morley’s Miracle. In this
segment we examine an unusual proof due to
Professor John H Conway.

InPart I of this article we narrated the history of this theorem
and discussed a pure geometry proof (M. T. Naraniengar’s).
We remarked that the proof startswith an equilateral

triangle and then proceeds to construct a con�iguration similar
to the original one; thus it reaches the desired conclusion.
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Figure 1. Morleý s theorem: The angle trisectors closest to each side
intersect at points which are the vertices of an equilateral triangle

Keywords: Angle trisector, equilateral triangle, congruent, sine rule,
backward proof
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• ∠M P N = x++

• ∠P M N = y

• ∠P N M = z

• ∠P VM = x+

• ∠PUN = x+

Figure 4.

Let the candidate triangle 𝑃𝑃𝑃𝑃�𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� be drawn as
shown, with its prescribed angles (see Figure 4).
Next, let rays 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 and 𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉 be drawn from 𝑃𝑃𝑃𝑃� such
that ∠𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉 𝑉𝑉 𝑉𝑉𝑉𝑉� and ∠𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 𝑉𝑉 𝑈𝑈𝑈𝑈�. Let these
rays intersect the side𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� at 𝑈𝑈𝑈𝑈 and 𝑉𝑉𝑉𝑉
respectively. Then ∠𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀� 𝑉𝑉 180 − 𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 � 𝑉𝑉 𝑥𝑥𝑥𝑥�
and ∠𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁� 𝑉𝑉 180 − 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉𝑉 � 𝑉𝑉 𝑥𝑥𝑥𝑥�. Note that this
makes △𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈𝑉𝑉𝑉𝑉 isosceles, with 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 𝑉𝑉 𝑉𝑉𝑉𝑉�𝑉𝑉𝑉𝑉. Now we
�ix the scale of the triangle so that 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 and 𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉
have the same length as the side of the equilateral
triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. This is clearly possible.
With this in place, we consider △𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and
△𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉. They are clearly congruent to each other
(‘ASA congruence’), as they have the same sets of
angles, and the sides opposite angle 𝑈𝑈𝑈𝑈 have equal
length; hence𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 𝑃𝑃 𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�. In just the sameway we
have𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃 𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃� (consider △𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and △𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈).
Hence when we insert △𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑁𝑁𝑁𝑁� into angle𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
the �it is exact:𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃� lines up with𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃; 𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃� lines
up with 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃; and𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� lines up with𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁.
The same kinds of actions can be repeated on the
other two sides of the triangle: we insert into
angle 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 and angle 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 triangles of suitable
size, which then match up exactly with the
spaces occupied by the angles. (See Figure 4. We
have not named the triangles to avoid a visual
clutter.) With these three triangles thus in place,
the seven triangles together make up triangle
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, whose angles at 𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀 and 𝑁𝑁𝑁𝑁 are 3𝑥𝑥𝑥𝑥, 3𝑈𝑈𝑈𝑈 and
3𝑉𝑉𝑉𝑉. This means that △𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is similar to the given
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (they have the same sets of angles).
Moreover, the lines 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 trisect ∠𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; the

lines𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 and𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 trisect ∠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; and the lines 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃
and 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 trisect ∠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. So the trisectors of the
angles of △𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 give rise to an equilateral
triangle, and it follows that the same must be
true of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, just as Morley’s theorem asserts.
This proves the theorem.

Another presentation of Conway’s proof
Conway’s proof can be presented in a different
way. See Figure 5. Consider △𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. Since
∠𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ��, it follows that
∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃 ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁   𝑃𝑃 𝑉𝑉𝑉𝑉.
Now we consider the ratio 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀 𝑃𝑃 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 in △𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. We
compute the ratio via △𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and △𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃:

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀
𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 𝑉𝑉 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉 sin 𝑥𝑥𝑥𝑥�𝑃𝑃 sin 𝑈𝑈𝑈𝑈
sin 𝑥𝑥𝑥𝑥�𝑃𝑃 sin 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉 sin 𝑉𝑉𝑉𝑉

sin 𝑈𝑈𝑈𝑈 .

It follows that
sin∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
sin∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉 sin 𝑉𝑉𝑉𝑉

sin 𝑈𝑈𝑈𝑈 .

We also know that ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝑃𝑃 𝑈𝑈𝑈𝑈. From
these relations we may conclude that

∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑃𝑃 ∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

(This may seem intuitively clear but it needs
justi�ication. Let ∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝑃𝑃𝑃𝑃, ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑃𝑃𝑃𝑃, and let
𝑤𝑤𝑤𝑤 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉  𝑉𝑉𝑉𝑉. Then𝑤𝑤𝑤𝑤 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   too, and
sin 𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . We now have:

sin 𝑃𝑃𝑃𝑃
sin 𝑃𝑃𝑃𝑃 𝑉𝑉 sin 𝑈𝑈𝑈𝑈

sin 𝑉𝑉𝑉𝑉 𝑃𝑃
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Figure 2.

We added that many of the pure geometry proofs
known today proceed in just this way.
Now, in the concluding piece of this three-part
series, we give another such proof; this one has
sprung from the fertile mind of Professor John
Conway [2]. (See https://en.wikipedia.org/wiki/
John_Horton_Conway for information on this
remarkable individual.) It may well be the most
unusual of all the proofs of Morley’s theorem.
(Actually, our proof is a slight adaptation of
Conway’s proof.)
Given △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, let angles 𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 be de�ined by
𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥, 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 (see Figure 2). We
shall assume henceforth that all angles are
measured in degrees, so that 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝐴𝐴 𝑥𝑥𝑥𝑥.
Conway starts by introducing the following
operation for angles. Let 𝜃𝜃𝜃𝜃 be any angle
(measured in degrees, of course). Then he de�ines
𝜃𝜃𝜃𝜃� to be the angle 𝜃𝜃𝜃𝜃 𝑥𝑥 𝑥𝑥𝑥𝑥 and 𝜃𝜃𝜃𝜃�� to be the angle
𝜃𝜃𝜃𝜃� 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝜃𝜃𝜃𝜃 𝑥𝑥 𝜃𝜃𝜃𝜃𝑥𝑥. So a triangle exists with

angles of 𝑥𝑥�𝑥𝑥 𝑥𝑥�𝑥𝑥 𝑥𝑥�: it is an equilateral triangle. In
the same way we can assert that:
• A triangle exists with angles 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�; for,
𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥� 𝑥𝑥 𝑥𝑥𝑥𝑥� 𝐴𝐴 𝐴𝐴8𝑥𝑥.

Similarly, a triangle exists with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥�,
and a triangle exists with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥.

• A triangle exists with angles 𝑥𝑥𝑥𝑥��, 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥; for,
𝑥𝑥𝑥𝑥�� 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 𝑥𝑥.

Similarly, a triangle exists with angles 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥��, 𝑥𝑥𝑥𝑥,
and a triangle exists with angles 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥��.

Conway starts by constructing an equilateral
triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 with side 𝜃𝜃 unit (Figure 3). Then he
constructs:
• On side 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 as base:△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥
at vertices 𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃 respectively;

• On side 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 as base: △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄 with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥
at vertices 𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃, 𝑄𝑄𝑄𝑄 respectively;

• On side 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 as base:△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 with angles 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥�, 𝑥𝑥𝑥𝑥
at vertices 𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃,𝑅𝑅𝑅𝑅 respectively.

Each of these is a legitimate triangle, in the sense
that the prescribed angles add up to 𝜃𝜃8𝑥𝑥. Each
one is uniquely �ixed both in shape and si�e.
The computation in Figure 3 shows that
∠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  ��. This fact allows us to insert into
angle𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 a triangle 𝑃𝑃𝑃𝑃�𝑅𝑅𝑅𝑅�𝑃𝑃𝑃𝑃� with angles 𝑥𝑥𝑥𝑥��, 𝑥𝑥𝑥𝑥
and 𝑥𝑥𝑥𝑥. (We have noted earlier that there does exist
a triangle with these angles, as the angles do add
up to 𝜃𝜃8𝑥𝑥.) �ut we need to �ix the si�e of the
triangle �irst. We do this as follows.
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Let the candidate triangle 𝑃𝑃𝑃𝑃�𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� be drawn as
shown, with its prescribed angles (see Figure 4).
Next, let rays 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 and 𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉 be drawn from 𝑃𝑃𝑃𝑃� such
that ∠𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉 𝑉𝑉 𝑉𝑉𝑉𝑉� and ∠𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 𝑉𝑉 𝑈𝑈𝑈𝑈�. Let these
rays intersect the side𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� at 𝑈𝑈𝑈𝑈 and 𝑉𝑉𝑉𝑉
respectively. Then ∠𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀� 𝑉𝑉 180 − 𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 � 𝑉𝑉 𝑥𝑥𝑥𝑥�
and ∠𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁� 𝑉𝑉 180 − 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉𝑉 � 𝑉𝑉 𝑥𝑥𝑥𝑥�. Note that this
makes △𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈𝑉𝑉𝑉𝑉 isosceles, with 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 𝑉𝑉 𝑉𝑉𝑉𝑉�𝑉𝑉𝑉𝑉. Now we
�ix the scale of the triangle so that 𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈 and 𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉
have the same length as the side of the equilateral
triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. This is clearly possible.
With this in place, we consider △𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and
△𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑉𝑉𝑉𝑉. They are clearly congruent to each other
(‘ASA congruence’), as they have the same sets of
angles, and the sides opposite angle 𝑈𝑈𝑈𝑈 have equal
length; hence𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 𝑃𝑃 𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�. In just the sameway we
have𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 𝑃𝑃 𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃� (consider △𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and △𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃�𝑈𝑈𝑈𝑈).
Hence when we insert △𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃�𝑁𝑁𝑁𝑁� into angle𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
the �it is exact:𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃� lines up with𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃; 𝑁𝑁𝑁𝑁�𝑃𝑃𝑃𝑃� lines
up with 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃; and𝑀𝑀𝑀𝑀�𝑁𝑁𝑁𝑁� lines up with𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁.
The same kinds of actions can be repeated on the
other two sides of the triangle: we insert into
angle 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 and angle 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 triangles of suitable
size, which then match up exactly with the
spaces occupied by the angles. (See Figure 4. We
have not named the triangles to avoid a visual
clutter.) With these three triangles thus in place,
the seven triangles together make up triangle
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, whose angles at 𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀 and 𝑁𝑁𝑁𝑁 are 3𝑥𝑥𝑥𝑥, 3𝑈𝑈𝑈𝑈 and
3𝑉𝑉𝑉𝑉. This means that △𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is similar to the given
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (they have the same sets of angles).
Moreover, the lines 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 trisect ∠𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; the

lines𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 and𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 trisect ∠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; and the lines 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃
and 𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃 trisect ∠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. So the trisectors of the
angles of △𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 give rise to an equilateral
triangle, and it follows that the same must be
true of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, just as Morley’s theorem asserts.
This proves the theorem.

Another presentation of Conway’s proof
Conway’s proof can be presented in a different
way. See Figure 5. Consider △𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. Since
∠𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ��, it follows that
∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃 ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁   𝑃𝑃 𝑉𝑉𝑉𝑉.
Now we consider the ratio 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀 𝑃𝑃 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 in △𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. We
compute the ratio via △𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and △𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃:

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀
𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 𝑉𝑉 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉 sin 𝑥𝑥𝑥𝑥�𝑃𝑃 sin 𝑈𝑈𝑈𝑈
sin 𝑥𝑥𝑥𝑥�𝑃𝑃 sin 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉 sin 𝑉𝑉𝑉𝑉

sin 𝑈𝑈𝑈𝑈 .

It follows that
sin∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
sin∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉 sin 𝑉𝑉𝑉𝑉

sin 𝑈𝑈𝑈𝑈 .

We also know that ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝑃𝑃 𝑈𝑈𝑈𝑈. From
these relations we may conclude that

∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑃𝑃 ∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

(This may seem intuitively clear but it needs
justi�ication. Let ∠𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝑃𝑃𝑃𝑃, ∠𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑃𝑃𝑃𝑃, and let
𝑤𝑤𝑤𝑤 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉  𝑉𝑉𝑉𝑉. Then𝑤𝑤𝑤𝑤 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   too, and
sin 𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . We now have:

sin 𝑃𝑃𝑃𝑃
sin 𝑃𝑃𝑃𝑃 𝑉𝑉 sin 𝑈𝑈𝑈𝑈

sin 𝑉𝑉𝑉𝑉 𝑃𝑃
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This is not the first sentence of this article.

The above sentence can be both true and false. It is clearly the first 
sentence of this article. So it is false, because it says it is not the first 
sentence! But because this is part 2 of our article on Paradoxes, if we 
regard both parts as one article, it is true! We leave it to you to resolve 
this paradox.

In the first part of this two-part exposition on paradoxes in 
mathematics, we introduced the idea of self-reference, the nature of 
mathematical truth, the problems with circular proofs and explored 
Zeno’s Paradox. In this part we delve deeper into the challenges of 
determining the 'truth value' of pathological self-referential statements, 
visual paradoxes and more.

Self - Reference and Russell’s Paradox
There is a class of paradoxes that arise from objects referring to 
themselves. The classic example is Epimenides Paradox (also called the 
Liar Paradox). Epimenides was a Cretan, who famously remarked  
“All Cretans are liars.” So did Epimenides tell the truth? If he did, then 
he must be a liar, since he is a Cretan, and so he must be lying! If he 
was lying, then again it is not the case that all Cretans are liars, and so 

Paradoxes:  
     Part 2 of 2

Of Art and Mathematics

Punya Mishra & Gaurav Bhatnagar

Keywords: Paradox, Circular proof, Zeno's paradoxes, Russell's paradox, 
Epimenides liar paradox, Self-reference, Contradiction, Escher, Penrose, 
Jourdain's paradox, Triangle, Necker's Cube
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Figure 5.

∴ sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤
sin 𝑤𝑤𝑤𝑤 = sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤

sin 𝑤𝑤𝑤𝑤 ,

∴ sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 sin 𝑤𝑤𝑤𝑤 = sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 sin 𝑤𝑤𝑤𝑤,

∴ (sin𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤s 𝑤𝑤𝑤𝑤 𝑤𝑤 sin 𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤s𝑤𝑤𝑤𝑤𝑤𝑤 sin 𝑤𝑤𝑤𝑤 =
(sin𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤s 𝑤𝑤𝑤𝑤 𝑤𝑤 sin 𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤s𝑤𝑤𝑤𝑤𝑤𝑤 sin 𝑤𝑤𝑤𝑤,

∴ 𝑤𝑤𝑤𝑤s 𝑤𝑤𝑤𝑤 𝑤𝑤𝑤 𝑤𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤 𝑤𝑤𝑤 𝑤𝑤𝑤𝑤
(since sin𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤),

∴ sin(𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤

which yields 𝑤𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤 and hence 𝑢𝑢𝑢𝑢 = 𝑢𝑢𝑢𝑢 as well. The
reader could look for different ways of arguing
this out.)
In �ust the same way we �ind that ∠𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑤𝑤𝑤𝑤,
∠𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑄𝑄𝑄𝑄, ∠𝑅𝑅𝑅𝑅𝑄𝑄𝑄𝑄𝑅𝑅𝑅𝑅 = 𝑄𝑄𝑄𝑄, ∠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑄𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄 . We conclude,
as earlier, that △𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 is similar to △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 trisect ∠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅;𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 trisect ∠𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄; and
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 trisect ∠𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄. So the trisectors of the
angles of △𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 give rise to an equilateral
triangle, and the same must be true of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. This
proves Morley’s theorem.
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