Lurking within any triangle ...

Morley’s
Miracle — Part 1l

...is an equilateral triangle

This article concludes the three-part series begun in the
July 2014 issue, wherein we study one of the most celebrated
theorems of Euclidean geometry: Morley’s Miracle. In this
segment we examine an unusual proof due to

Professor John H Conway.
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n Part I of this article we narrated the history of this theorem

and discussed a pure geometry proof (M. T. Naraniengar’s).

We remarked that the proof starts with an equilateral
triangle and then proceeds to construct a configuration similar
to the original one; thus it reaches the desired conclusion.
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Figure 1. Morley’s theorem: The angle trisectors closest to each side
intersect at points which are the vertices of an equilateral triangle
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Figure 2.

We added that many of the pure geometry proofs
known today proceed in just this way.

Now, in the concluding piece of this three-part
series, we give another such proof; this one has
sprung from the fertile mind of Professor John
Conway [2]. (See https://en.wikipedia.org/wiki/
John_Horton_Conway for information on this
remarkable individual.) It may well be the most
unusual of all the proofs of Morley’s theorem.
(Actually, our proofis a slight adaptation of
Conway’s proof.)

Given AABC, let angles x, y, z be defined by

A =3x,B =3y and C = 3z (see Figure 2). We
shall assume henceforth that all angles are
measured in degrees, so that x + y + z = 60.

Conway starts by introducing the following
operation for angles. Let 6 be any angle
(measured in degrees, of course). Then he defines
0* to be the angle 6 + 60 and 6*7 to be the angle
0% + 60 = 6 + 120. So a triangle exists with

angles of 0%, 0%, 0*: it is an equilateral triangle. In
the same way we can assert that:

« A triangle exists with angles x, y*, z*; for,
x+y*+z*=180.

Similarly, a triangle exists with angles x*, y, z*,
and a triangle exists with angles x*, y*, z.

« A triangle exists with angles x**, y, z; for,
xtt +y+2z=180.

Similarly, a triangle exists with angles x, y*¥, z,
and a triangle exists with angles x, y, z*™.

Conway starts by constructing an equilateral
triangle PQR with side 1 unit (Figure 3). Then he
constructs:

e Onside PQ as base: APQN with angles y*, x™, z
at vertices P, , N respectively;

e Onside QR as base: AQRL with angles z*, y*, x
at vertices Q, R, L respectively;

e Onside RP as base: ARPM with angles x*, z*, y
atvertices R, P, M respectively.

Each of these is a legitimate triangle, in the sense
that the prescribed angles add up to 180. Each
one is uniquely fixed both in shape and size.

The computation in Figure 3 shows that

£MPN = x**. This fact allows us to insert into
angle MPN a triangle P’M'N’ with angles x**, y
and z. (We have noted earlier that there does exist
a triangle with these angles, as the angles do add
up to 180.) But we need to fix the size of the
triangle first. We do this as follows.

ZMPN =360—60—y"—z*

;. ZMPN =x*"

Figure 3.
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o /MPN =xt+t
o« /PMN =y
o /PN'M =z
o /PVM =x*t
o /PUN =x*

Figure 4.

Let the candidate triangle P’M'N’ be drawn as
shown, with its prescribed angles (see Figure 4).
Next, let rays P'U and P’V be drawn from P’ such
that zM'P'V = z* and «N'P'U = y™. Let these
rays intersect the side M'N’ at U and V
respectively. Then ZP'VM' =180 —y — zt = x*
and £P'UN' = 180 — z — y* = x*. Note that this
makes AP'UV isosceles, with P'U = P'V. Now we
fix the scale of the triangle so that P'U and P'V
have the same length as the side of the equilateral
triangle PQR. This is clearly possible.

With this in place, we consider AMPR and
AM'P'V. They are clearly congruent to each other
(‘ASA congruence’), as they have the same sets of
angles, and the sides opposite angle y have equal
length; hence MP = M'P’. In just the same way we
have NP = N'P' (consider ANPQ and AN'P'U).
Hence when we insert AM'P’'N’ into angle MPN,
the fit is exact: M' P’ lines up with MP; N'P' lines
up with NP; and M'N’ lines up with MN.

The same kinds of actions can be repeated on the
other two sides of the triangle: we insert into
angle NQL and angle LRM triangles of suitable
size, which then match up exactly with the
spaces occupied by the angles. (See Figure 4. We
have not named the triangles to avoid a visual
clutter.) With these three triangles thus in place,
the seven triangles together make up triangle
LMN, whose angles at L, M and N are 3x, 3y and
3z. This means that ALMN is similar to the given
AABC (they have the same sets of angles).
Moreover, the lines LQ and LR trisect ZMLN; the

lines MR and MP trisect ZLMN; and the lines NP
and NQ trisect ZLNM. So the trisectors of the
angles of ALMN give rise to an equilateral
triangle, and it follows that the same must be
true of AABC, just as Morley’s theorem asserts.
This proves the theorem.

Another presentation of Conway’s proof

Conway’s proof can be presented in a different
way. See Figure 5. Consider APMN. Since
ZMPN = x*7, it follows that

ZPMN + £PNM =y + z.

Now we consider the ratio PM : PN in APMN. We
compute the ratio via AMPR and ANQP:

PM PM/PR sinx*/siny  sinz
PN =~ PN/PQ sinx*/sinz  siny’
It follows that

sinZPNM  sin z

sinZPMN ~ siny’

We also know that ZPNM + £PMN = z + y. From
these relations we may conclude that

LPNM =2z sPMN =y.

(This may seem intuitively clear but it needs
justification. Let ZPMN = u, ZPNM = v, and let
w =7y +z Thenw = u + v too, and

sinu : sinv = siny : sin z. We now have:

sinu siny

sinv sinz’
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Z/MPN =360—60—y" —z"

0 . ZMPN =x*t*
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Figure 5.

which yields v = z and hence u = y as well. The
reader could look for different ways of arguing
this out.)

sin(w —v) _ sin(w —z)

sinv sinz
- sin(w —v)sinz = sin(w — z) sinv, In just the same way we find that ZQNL = z,
2 (sinw cos v — sinv cosw) sinz = 2QLN = x, ZRLM = x, ZRML = y. We conclude,
as earlier, that ALMN is similar to AABC; LQ and
LR trisect ZMLN; MR and MP trisect ZLMN; and
~ cosvsinz = coszsinv NP and NQ trisect ZLNM. So the trisectors of the
angles of ALMN give rise to an equilateral
triangle, and the same must be true of AABC. This
~ sin(z—v) =0, proves Morley’s theorem.

(sinw cosz — sinz cosw) sin v,

(since sinw # 0),

References

[1] Bankoff, L. “A simple proof of the Morley theorem”, Math. Mag., 35 (1962) 223-224
[2
[3
[

] Conway, J. H. “Proof of Morley’s Theorem”, http://www.cambridge2000.com/memos/pdf/conway2.pdf
] Coxeter, H. S. M. “Introduction to Geometry”, 2nd ed., Wiley, New York, 1969
]

4] Coxeter, H. S. M. & Greitzer, S. L. “Geometry Revisited”, Random House/Singer, New York, 1967

PROF. V.G. TIKEKAR retired as the Chairman of the Department of Mathematics, Indian Institute of Science,
Bangalore, in 1995. He has been actively engaged in the field of mathematics research and education and has
taught, served on textbook writing committees, lectured and published numerous articles and papers on the
same. Prof. Tikekar may be contacted at vgtikekar@gmail.com.

At Right Angles | Vol. 4, No. 2, July 2015



