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Set theory revisited

As easy as PIE

Principle of Inclusion and Exclusion – Part 2

In Part–I of this article we solved some problems using the PIE or the ‘Principle

of Inclusion and Exclusion’. We saw how the law |AA A AAA A AAAA A AAAA A AAA A AAA

generali�es, and we used the PIE to �ind a formula for Euler’s totient function

φφφφφφ which counts the number of integers in the set {1, 2, ... , NNN which are

coprime to NN. �ow in Part–II we use the PIE to �ind a generali�ation of the

formula connecting the gcd and lcm of two numbers. We also discuss a

problem about a secretary who loves mixing up job offers sent to applicants,

and another problem concerning placement of rooks on a chessboard.

I. The Möbius function

�ou would have noticed in the �irst part of this article ��IE�I� that

the same kind of sum has been coming up repeatedly, in which

terms are alternately positive and negative. A convenient way of

writing such sums is through the use of a function called the

Möbius function, written μμμμμμ and read aloud as ‘mew of nn’. It is

de�ined as follows: μμμμμμμ, and:

• If nn is the product of unequal prime numbers, then μμμμμμμμ if

the number of primes is even, and μμμμμμμμμ if the number of

primes is odd. So μμμμμμμμμ for any prime pp; μμμμμμμμμμ for any

two unequal primes ppppp; and so on. Here is a more compact

way of writing this: if nn is the product of rr distinct primes, then

μμμμμμμμμμμ�. Examples: μμμμμμμμ, μμμμμμμμ, μμμμμμμμμ.

• If nn is divisible by the square of any prime number, then

μμμμμμμ μ. Examples: μμμμμμ μ, μμμμμμμ μ.
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Using this function, an expression such as

NN−�NN

pp

+

NN

qq

+

NN

rr + ⋯�

+ � NN

pppp

+

NN

qqqq

+

NN

pppp + ⋯� − ⋯

can be written compactly as

�

���

μμμμμμ

NN

dd .

Hence, we have:

�μNNμ a �

���

μμμμμμ

NN

dd . (1)

Incidentally, the name Mö bius is popularly

known in another context — the so-called

Möbius strip, which will be a topic for another

day.

The Mö bius function has numerous nice

properties which make it a very useful function in

number theory and combinatorics.

II. Relation between GCD and LCM of

several numbers

To demonstrate how unexpectedly useful the

PIE formula can be, we describe a nice

application of the formula. Here is the context.

We all know the pleasing formula that relates

gcd (‘greatest common divisor’, also known as

‘highest common factor’) and lcm (‘lowest

common multiple’) of any two positive integers

aa and bb:

gcd(aaa aaa a lcm (aaa aaa a aaaaa (2)

This formula relates the gcd and lcm of two

integers aaa aa. Here is the corresponding formula

for the case of three integers. If aaa aaa aa be any

three positive integers, then:

lcm (aaa aaa aaa

= aaaaaa a aaaaaaa aaa aaa

gcd(aaa aaa a aaaaaaa aaa a aaaaaaa aaa

. (3)

For the general case we need the following result

which is actually the PIE in another incarnation

(though it may not look like it):

Theorem (PIE�

). If nn�, nn�, ⋯ , nn� is � �inite se�uen�e

of positive integers, then

max(nn�, ⋯ , nn�)

a �

�

nn� − �

���

min �nn�, nn��

+ �

�����

min �nn�, nn�, nn��

− ⋯ + (−1)��� min (nn�, ⋯ , nn�) . (4)

Here, ‘max’ and ‘min’ stand for maximum and

minimum respectively. The symbol ∑��� means:

‘the sum over all pairs of indices iiiii where iiiii.

Similarly for the symbol ∑����� and others like it.

The formula may look mysterious, so it will help if

we examine it more closely.

• Take the case of two positive integers aaa aa. Then

the claim is that

max(aaa aaa a aa aaaaaaaaaaa aaaa

This is clearly true.

• Take the case of three positive integers aaa aaa aa.

Then the claim is that

max(aaa aaa aaa a aa aaaa aa aaaaaaaa aaa

− min(aaa aaaaaaaaaaa aaa

+ min(aaa aaa aaaa

To see why this is true, suppose (there is no loss

of generality in assuming this) that aa a aa a aa.

The above claim then reduces to the following:

cccccccccccccccccccccccccc

which is clearly true.

• Take the case of four positive integers aaa aaa aaa aa

where (without any loss of generality, as

earlier) aa a aa aaaa aa. Then the claim reduces

to the following claim:

dddddddddddddd

− (aa a aa a aa aaaaaaa aaa

+ (aa a aa a aa aaaaa aaa

which is clearly true. The general case may be

similarly reasoned out and is left as an exercise.

To convince ourselves that the above can indeed

be useful in unexpected ways, let us look at a set
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aa�, aa�,⋯,aa� of positive integers. Then we will

show the following:

lcm (��,⋯,��) �

(∏� ��) �∏����� ��� ���, ��, ���� ⋯

�∏��� ��� ���, ���� �∏������� ��� ���, ��, ��, ���� ⋯.

(5)

This will be deduced from statement (4) about

maxima and minima. To see the connection,

consider the prime numbers dividing the aa�’s.

Then, clearly: the exponent of a prime pp dividing

the gcd of a collection of numbers is equal to the

minimum of the exponents of pp dividing the

numbers, and the exponent of a prime pp dividing

the lcm of a collection of numbers is equal to the

maximum of the exponents of pp dividing the

numbers.

Thus, if pp�� ,⋯,pp�� are the powers of a �ixed prime

pp dividing the numbers aa�,⋯,aa�, then the gcd of

the aa�’s is exactly divisible by pp���(��,⋯,��)

, and the

lcm of the aa�’s is exactly divisible by pp���(��,⋯,��)

.

Let us use the short form Ord�(NNN for the largest

integer ee such that pp� divides NN. Then if we raise

pp to each of the terms of the equality

max(nn�,⋯,nn�)

= �

�

nn� − �

���

min �nn�, nn��

+ �

�����

min �nn�, nn�, nn��

− ⋯ + (−1)��� min (nn�,⋯,nn�) ,

(to see why, you need to use repeatedly the fact

that pp��� = pp� ×pp� and pp��� = pp� ÷pp�), we obtain

Ord� (lcm (��,⋯,��))

� Ord�� (∏� ��) �∏����� ��� ���, ��, ���� ⋯

�∏��� ��� ���, ���� �∏������� ��� ���, ��, ��, ���� ⋯ �.

We have obtained expression (5) for the lcm of the

aa�’s.

III. The secret(ary) adversary

Here is another well-known problem concerning

a particularly careless (or perhaps mischievous)

secretary. The scenario is that a rich person

writes a letter each to Alka, Beena, Chanda and

�eepa offering different �inancial scholarships to

each, but the secretary puts each letter in a

wrongly addressed envelope. The �inancier is

naturally cross and asks the secretary to correct

his mistake. However, the secretary again puts

each letter in a wrong envelope! How many ways

can he make such a mistake? A bit of counting

(which we leave as an exercise for you) shows

that the number is 9.

What is the best way to �igure out this number if

there are nn people and nn envelopes (and each

letter must go to the wrong person)? Once again,

the PIE comes to the rescue. The total number of

ways of distributing nn letters among nn persons

(one letter to each person) is of course nnn. Let NN�

be the number of ways of distributing the letters

so that at least one person (it could be any of the

nn persons) gets his or her correct letter; let NN� be

the number of ways of distributing the letters so

that at least two persons get their correct letters;

let NN� be the number of ways of distributing the

letters so that at least three persons get their

correct letters; and similarly for NN�, NN�, .... (Note

that by this notation we could say that NN� = nnn.)

Then the PIE tells us that the number of ways of

distributing the letters so that no one gets their

letter is

NN� − NN� + NN� − NN� + NN� − + ⋯ + (−1)�NN�.

Computing NN�, NN�, ...is easy. Suppose that at least

rr people receive their correct letters. Let us look

at a �ixed set of rr people. For the remaining nn nnn

persons no restriction has been placed, so the

number of ways of distributing the letters is

(nn nnnnn. This is so for each �ixed set of rr persons,

and there are (�

�) such sets; hence

NN� = (�

�) × (nn nnnnn. It follows that the number of

possibilities in which when no one receives their

correct letter is

nnn −�nn

1

�(nn − 1)n +�nn

2

�(nn − 2)n −�nn

3

�(nn − 3)n

+ ⋯ + (−1)��

nn

nn

�0n = nnn

�

�

���

(−1)�

rrr

This is called the derangement number and it is

denoted by DD�; so DD� = nnn ∑�

���(−1)�/rrr.

Here are the values of the �irst few such numbers:

nn 1234 5 6 ⋯

DD� 0 1 2 9 44 265 ⋯
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