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Morley’s Miracle
The cover displays an extremely famous theorem - Morley’s theorem,

discovered by Frank Morley in 1899. It states the following (with reference

to a given triangle ABC): In any triangle ABC, draw the two internal

trisectors of each angle. Let the trisectors nearest to side BC meet at P, let

those nearest to side AC meet at Q, and let those nearest to side AB meet at

R, as shown in the figure. Then, regardless of the shape of ABC, triangle

PQR is always equilateral.

The theorem is one of the many results in Euclidean geometry discovered

in recent centuries, discoveries missed by the Greeks. Numerous results

pertaining to triangles and circles were discovered during the eighteenth

and nineteenth centuries when the centuries old subject of Euclidean

geometry was undergoing a revival; but of these, Morley’s theorem is

perhaps the most remarkable and most beautiful. It is sometimes called

Morley’s Miracle. It can be proved in many different ways, but to find even

one proof is a great challenge! Perhaps the one most easily found is the

trigonometric proof; it is direct, and based on the triple angle identity for

the sine. There are also proofs based on ‘pure geometry’.

Today, Euclidean geometry is undergoing yet another revival, thanks to the

entry of powerful dynamic geometry software like GeoGebra and the easy

availability of computers.

Notes on Cover Image



Greetings to all readers. With this issue we start the publication of a new

mathematics magazine which will serve as a resource for math teachers

and students in school.

Many of us involved in math education have long felt the need for such a

national level magazine — a publication addressed directly to teachers and

students, which offers a space to read about interesting topics in

mathematics, share one’s observations and experiences, read about new

resources, hear about upcoming events, and participate in problem solving.

At small, local levels there do exist a few such publications, but they do not

seem to reach the national mainstream, or play a part in a nation-wide debate

on math education.

What value does such a forum have? Oh, it is vitally important! Mathematics

education in India is in a deep crisis today, at almost every level. There are

many reasons behind this, but one of them, certainly, is the absence of a forum

for mathematics teachers where they can talk about their subject, share

ideas, articulate doubts and anxieties, and learn from one another. Likewise,

for students who love mathematics, there is not much of a space to relate with

others of like mind.

About a year back the Community Mathematics Centre (‘CoMaC’) of Rishi

Valley School approached the Azim Premji Foundation (‘APF’) to find out

whether they would consider a joint venture: a school level mathematics

magazine! APF expressed immediate interest, and soon an editorial group

was formed, comprising members from APF, CoMaC, some schools and

colleges, and a few other organizations engaged in mathematics and science

education. It was decided by this group that the magazine would be for high

school and middle school, and would be meant for teachers as well as

students. It would be brought out thrice a year, and each issue would have a

‘Features’ section, with articles on math topics; a ‘Classroom’ section, for

teachers; a ‘Technology’ section, with articles on math software; a ‘Reviews’

section with reviews of books, software and YouTube clips; a ‘Problem

Corner’; a detachable ‘Pullout’ for primary school teachers; and

miscellaneous material. The result is the magazine that you now hold in your

hands.

We named it At Right Angles — a phrase suggestive of mathematics but also

with connotations of thinking ‘out of the box’ and of trying out bold, new

ideas. It is our hope that our magazine will help stimulate such thinking and

such action. We even have a nickname for it: AtRiA. This is because ‘atria’ has

a dual meaning: in architecture the word ‘atrium’ means ‘large open space’,

and the plural of ‘atrium’ is ‘atria’. Indeed, Wikipedia has the following: “Atria

are a popular design feature because they give their buildings a feeling of

space and light.”

It is our hope that At Right Angles will play just such a role for mathematics

education: provide a large open space, in which we can talk about matters

From The
Chief Editor’s Desk . . .



related to mathematics and mathematics education, matters we wish to

share with others — those that have given us pleasure, and those which have

given us pain . . . .

A magazine of this sort needs regular contributions from its readers; these

are essential for its survival and good health! So we urge readers to write

articles for us. The guidelines for submissions are on the back inside cover of

the magazine. We also hope that readers will convey to us what they think of

the various articles. Suggestions, views, comments, criticisms, . . .—all are

welcome, so do please send them in!

The inaugural issue has a lot of material on the Pythagorean theorem and

themes related to this theorem; this will continue into the second issue as

well. It seems fitting that we do this, because the theorem of Pythagoras has

an incredibly rich history, with roots in every part of the world, and it is

certainly the best known result in all of mathematics.

But there are also other articles: a lovely ‘proof without words’ from the late

Prof A R Rao; articles on paper folding, on Pythagorean triples, on the use of

spreadsheets, on a classification of quadrilaterals, on the use of math

portfolios in teaching; a review of a well known book on Fermat’s Last

Theorem; a pullout on teaching fractions at the primary level; . . . . Enjoy your

reading!

— Shailesh Shirali

At Right Angles is a publication of Azim Premji University together with Community Mathematics Centre, Rishi Valley. It aims to reach

out to teachers, teacher educators, students & those who are passionate about mathematics. It provides a platform for the expression

of varied opinions & perspectives and encourages new and informed positions, thought-provoking points of view and stories of

innovation. The approach is a balance between being an ‘academic’ and 'practitioner’ oriented magazine.
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Features
This section has articles dealing with mathematical content, in pure and applied mathematics.

The scope is wide: a look at a topic through history; the life-story of some mathematician; a fresh

approach to some topic; application of a topic in some area of science, engineering or medicine;

an unsuspected connection between topics; a new way of solving a known problem; and so on.

Paper folding is a theme we will frequently feature, for its many mathematical, aesthetic and hands-on

aspects.  Written by practicing mathematicians, the common thread is the joy of sharing discoveries

and the investigative approaches leading to them.
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The Most Famous Theorem

The Theorem of 
Pythagoras
Understanding History – Who, When and Where 
Does mathematics have a history? In this article the author studies the tangled and 

multi-layered past of a famous result through the lens of modern thinking, look-

ing at contributions from schools of learning across the world, and connecting the 

mathematics recorded in archaeological finds with that taught in the classroom.

Shashidhar Jagadeeshan

Imagine, in our modern era, a very important theorem being 
attributed to a cult figure, a new age guru, who has collected 
a band of followers sworn to secrecy. The worldview of 

this cult includes number mysticism, vegetarianism and the 
transmigration of souls! One of the main preoccupations of 
the group is mathematics: however, all new discoveries are 
ascribed to the guru, and these new results are not to be shared 
with anyone outside the group. Moreover, they celebrate 
the discovery of a new result by sacrificing a hundred oxen! 
I wonder what would be the current scientific community’s 
reaction to such events.

This is the legacy associated with the most ‘famous’ theorem 
of all times, the Pythagoras Theorem. In this article, we will 
go into the history of the theorem, explain difficulties historians 
have with dating and authorship and also speculate as to  
what might have led to the general statement and proof of 
the theorem.
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Making sense of the history
Often in the history of ideas, especially when there 
has been a discovery which has had a significant 
influence on mankind, there is this struggle to find 
out who discovered it first. This search is very 
often coloured by various biases 
and obscured by the lack of au-
thentic information and scholar-
ship. The Pythagoras Theorem 
suffers from the same fate.  In this 
article I hope to give a summary 
of current understanding and, not 
being an expert historian, would 
like to state right at the beginning 
that I might have left out some 
major contribution.

Before proceeding further let us, 
at the cost of redundancy, recall 
the Pythagoras Theorem as stated 
by Euclid (I.47 of the Elements) 
and refer to it from now on as PT 
(P here can stand for Pythagoras or ‘Preeminent’!).

Obviously the first challenge for historians is the 
name. 

Why Pythagoras? Greek scholars seem to be in 
agreement that the first person to clearly state PT 
in all its generality, and attempt to establish its 
truth by the use of rigorous logic (what we now 
call mathematical proof), was perhaps Pythagoras 

of Samos. We actually know 
very little about Pythagoras, 
and what we do know was 
written by historians centu-
ries after he died.

Legend has it that Pythagoras 
was born around 572 B.C. on 
the island of Samos on the 
Aegean Sea. He was perhaps 
a student of Thales, a famous 
Greek philosopher and math-
ematician who was born half 
a century before Pythagoras. 
It is believed that Pythagoras 
travelled to Egypt, Babylon 
and even to India before he 

returned to Croton, a Greek settlement in south-
east Italy. Here he seems to have gathered a group 
of followers forming what we call the Pythagorean 
sect, with beliefs and practices as described in 
the introduction. It is believed that many Greek 
philosophers (Plato, for instance) were deeply in-
fluenced by Pythagoras, so much so that Bertrand 
Russell felt that he should be considered one of 
the most influential Western philosophers.

We will return to the Pythagorean School after we 
take a detour and look at contributions outside 
the Greek world (this is often difficult for many 
Eurocentric historians to swallow!)

The problem of dating! 
As students of history we must realise that the 
greatest challenge historians of antiquity face is 
that of giving accurate dates to events. There are 
many reasons for this, including the fact that many 
cultures were oral, records of events were burnt, 
languages of some cultures have yet to be deci-
phered and very often, as mentioned earlier, our 
only knowledge about people and events are from 
historians referring to them many years later. So 
I have tried to use a very conservative and broad 
timeline.Pythogoras (Approx 572 BC to 475 BC)

Pythagoras 
Theorem (PT)

In right-angled 
triangles, the square 

on the side 
subtending the 

right angle is equal to 
the sum of the squares 
on the sides containing 

the right angle.
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Let us now try and understand the history of PT 
chronologically.

The Mesopotamian contribution 
You may recall from your school history that one 
of the oldest known civilizations (Mesopotamia 
or Babylonia) existed in the geographical region 
between the Tigris and Euphrates rivers. Records 
of this civilization date back to 3500 BC. They 
used the sexagesimal system (base 60) and used 
mathematics for record keeping and astronomy. 
They also seemed interested in number theory 
and geometry. 

We know this because they left records of their 
work on thousands of clay tablets, five hundred 
of which seem mathematical in nature. There are 
two main sources that tell us about the Mesopota-
mian contribution to the PT. These are clay tablets 

with wedge shaped markings on them. Historians 
date these to the period of Hammurabi between 
1800 BC and 1600 BC.

The tablet known as YBC 7289 (tablet number 
7289 from the Yale Babylonian Collection) shows 
a tilted square with wedged shaped markings. The 
markings show calculations for the approximation 
of 30 2 . This would not have been possible

 
Fig. 1,
YBC 7289

Mesopotamia India Greece China

YBC 7289
Tilted square

with diagonal and
approximation

of   2.

Plimpton 322
Table of

Pythagorean triples. Pythagoras
of Samos.

Sulbasutras
Pythagorean triples.

Statement of PT for a square.
General statement of PT.

Approximation of    2.
Use of PT for geometrical constructions. Chou Pei Suan Ching

Statement of PT.
Diagrammatic proof
for (3,4,5) triangle.

ADBC
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Euclid
Proof of PT in complete
generality based on an

axiomatic system.
Proof of the converse.

Pythagorean School
Statement and proof of PT.

Use of PT in geometrical constructions.
Number theoretic properties of Pythagorean triples.

Discovery of irrationals and proof that   2 is irrational.

Timeline of the History of the Pythogoras Theorem (PT)
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without the knowledge of the PT or at least the 
special case of the isosceles right-triangle (see 
Figure 5).

The second is referred to as Plimpton 322, a 
slightly damaged clay tablet measuring 13 × 9 × 2 
cm and a part of the University of Columbia 
collection. It contains a 15 × 4 table of numbers.  
The table is thought to be a list of Pythagorean 
triples. Pythagorean triples are integers (a, b, c) 
which satisfy the equation a2 + b2 = c2 (see articles 
on Pythagorean triples). For example (3, 4, 5) is a 
Pythagorean triple.

Let us look at the entries in the 
tablet. The tablet contains errors in 
Rows 2, 9, 13 and 15 and the origi-
nal entries were in base 60, but the 
table below is in base 10 with the 
errors corrected. Here ‘s ’ stands for 
the shortest side of a right-triangle, 
‘d ’ for the hypotenuse and ‘l ’ for the 
other side (see Figure 3).

Let us look at entries in the first 
row. It is not hard to check that 
1692 – 1192 = 1202. That is, (119, 120, 
169) is a Pythagorean triple. Simi-
larly we can verify that (s, l, d ) form 
Pythagorean triples in each row (if 
you are sceptical – go ahead and do 
the computations!) So it seems clear 

that the tablet was a list of Pythagorean triples. 

However, mathematical historians are left with 
many questions. What exactly does Column 1 
represent? Is there any pattern behind the choice 
of ‘s ’ and ‘d ’ ? Is there some general principle at 
work here? 

There are three main interpretations of the pur-
pose of these tablets. The first is that Plimpton 
322 is a trigonometric table of some sort.  
Column 1 is Csc2 A, where angle ‘A’ ranges from 
just above 45° to 58°. 

Fig.2, Plimpton 322

(d/l)2 s d

(169/120)2 119 169 Row 1

(4825/3456)2 3367 4825 Row 2

(6649/4800)2 4601 6649 Row 3

(18541/13500)2 12709 18541 Row 4

(97/72)2 65 97 Row 5

(481/360)2 319 481 Row 6

(3541/2700)2 2291 3541 Row 7

(1249/960)2 799 1249 Row 8

(769/600)2 481 769 Row 9

(8161/6480)2 4961 8161 Row 10

(75/60)2 45 75 Row 11

(2929/2400)2 1679 2929 Row 12

(289/240)2 161 289 Row 13

(3229/2700)2 1771 3229 Row 14

(106/90)2 56 106 Row 15

Table 1 - Plimpton 322 in modern notation

d l

s

A

Fig. 3
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The second and third interpretations are more 
involved and we will require another table to 
understand them! (See Table 2; the roles played 
by ‘x’ and ‘y’ will become clear after reading the 
following two paragraphs.)

Let us examine the first, last and middle rows 
of Plimpton 322 to see if any pattern emerges. 
Neugebauer and others have proposed that ‘s ’ and 
‘d ’ are generated by a pair of positive integers ‘p ’  
and ‘q ’, which are of opposite parity and relatively 
prime. The relationship between s, d, l, p and q 
is as follows: s = p2 – q2, d = p2 + q2, l  = 2pq. In fact, 
if we are given any two integers p, q relatively 
prime, with one of them even, we can generate all 
Pythagorean triples. Quite a remarkable feat, don’t 
you think? The article by S Shirali (elsewhere 
in this issue) explores various ways of generat-
ing Pythagorean triples and in the next issue this 
method will be explored in detail. 

Of course one can now ask, is there a pattern in 
the choice of p and q (and also x and y)? They are 
so-called ‘regular’ numbers (numbers of the form 
2a 3b 5c, where a, b, c are integers). Can you see the 
connection between 2, 3, 5 and the sexagesimal 
system? Moreover, there is a pattern on how p, q, 
x, y change as we move from Row 1 to 15; but this 
is quite technical, so for more details we refer the 
reader to [AA] and [RE].

The third interpretation, first put forward by Bru-
ins in 1949, is called the ‘reciprocal’ method. Here 
the table is believed to be generated by a pair of 
rational numbers ‘x ’ and ‘y ’ such that xy = 1
(So x and y are a pair of reciprocals.)

Here  l
s x y

2

–
=   and  

l
d x y

2
=

+

It is impossible to say for sure which interpreta-
tion is correct. But scholars feel that apart from 
Plimpton 322 there is no other evidence of knowl-
edge of trigonometry in Mesopotamia, and that 
the second interpretation is not in keeping with 
the approach to mathematics found in the other 

tablets. Many scholars favor the ‘recipro-
cal’ method as they feel that it is not only 
mathematically valid, but is also historically, 
archeologically and linguistically consistent 
with the style and conventions of ancient 
Babylonian mathematics. 

It may amuse readers to know that scholars like 
Robson [RE] feel that the author of Plimpton 322 
was a teacher, and the tablet is a kind of ‘question 
bank’ which would “have enabled a teacher to set 
his students repeated exercises on the same math-
ematical problem, and to check their intermediate 
and final answers without repeating the calcula-
tions himself.” 

These two tablets, along with evidence from tab-
lets found in Susa and Israel from the Babylonian 
period, clearly demonstrate that they were well 
versed with the PT and were also adept at using it.

Contribution from India
The history of India and Indian mathematics poses 
many challenges to historians. The difficulties 
range from giving a balanced and accurate picture 
to dating various events. At the same time, there 
seems to be a great deal of interest today in the 
contributions of the Indian subcontinent to math-
ematics. This is particularly so after the discovery 
of the Kerala School of mathematics, which came 
very close to discovering calculus long before 
Newton and Leibnitz. Mathematics in India was 
inspired by astronomy, record keeping, religion 
and perhaps sheer curiosity.

Historians believe that early Indian civilizations 
date to the third or fourth millennium BC. Our 
main interest is in the Sulbasutras, which literally 
means the ‘rule of cords.’ They are a series of texts 
(Vedangas) which accompany the Vedas and give 
detailed instructions on how rituals are to be per-
formed and sacrificial altars (Vedis) constructed. 

The most important Sulbasutras are attributed to 
Boudhayana, Manava, Apastamba and Katyayana. 
Boudhayana is believed to have lived around 800 
BC and Apasthamba around 500 BC.

What is of significance is that in the Sulbasutras 
we find a general statement of the PT as follows 
[see PK]: “The cord [equal to] the diagonal of an 

Row# p q x y S d

1 12 5 144/60 25/60 119 169

8 32 15 128/60 101250/ 216000 799 1249

15 9 5 108/60 20/36 56 106

Table 2
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oblong makes [the area] that both the length and 
width separately [make]. By knowing these [things], 
the stated construction is [made]. ” {Apastamba Sul-
basutra 1.4 and Boudhayana Sulbasutra 1.12}

This may be the earliest general statement (at 
least for right triangles with rational sides) of the 
PT, perhaps predating 800 BC. However, we must 
mention that there is a reference to this result in 
China clearly before Pythagoras, but whose exact 
date is unknown. We will discuss this in the sec-
tion on the Chinese contribution.

We also find in the Sulbasutras (see [PK]) the 
application of the PT to a square (isosceles right 
triangle): “The cord [equal to] the diagonal of a 
[square] quadrilateral makes twice the area. It is 
the doubler of the square.” {Apastamba Sulbasutra 1.6, 
Boudhayana Sulbasutra 1.9 and Katyayana Sulbasutra 2.9}

We will discuss in a later section how perhaps 
the recognition of PT for the special case of the 
isosceles right triangle led to the discovery of the 
general theorem.

The Sulbasutras also contain Pythagorean triples, 
approximation of square roots and the use of PT 
for many geometrical constructions. Why don’t 
you try your hand (using a straightedge and 
compass) at some of the constructions found in 
the Sulbasutras? For example, try constructing 
a square whose area is equal to the sum of two 
given squares. Or, try constructing a square whose 
area is equal to that of a given rectangle.

What emerges clearly is that the Sulbakaras (au-
thors of the sutras) had a very good understand-
ing of PT and its applications, both to extracting 
roots and to geometrical constructions. We must, 
however, acknowledge that there is no evidence 
that the notion of proving mathematical state-
ments was part of their framework.

Chinese contribution
 We are all aware that China has been home to a 
very ancient civilization that developed along the 
rivers of Yangtze and Huang Ho more than 5000 
years ago. The Chinese were interested in many 
areas of mathematics, again perhaps driven by 
astronomy, the need to have accurate calendars 
and sheer intellectual interest.

As far as the PT is concerned, our main source of 
information is the Chou Pei Suan Ching (The Ar-
ithmetical Classic of the Gnomon and the Circular 
Paths of Heaven).  The exact date of this book has 
been debated for a long time. It refers to a con-
versation between the Duke Zhou Gong and his 
minister Shang Kao around 1000 BC, discussing 
the properties of a right triangle, with a statement 
of the PT and a diagrammatic proof given. It is not 
clear if such a conversation did take place. How-
ever, scholars believe that earlier results were put 
together in the form of a book, from 235 BC to 156 
BC, and were edited by Zhang Chang around 156 
BC. Further, a famous mathematician Zhao Shuang 
wrote commentaries on the Chou Pei, adding orig-
inal material of his own, including the well-known 
diagrammatic proof (see Figures 4, 7 and 8).

The PT in Chinese literature is referred to as 
‘kou ku’ (see [ JG ] ). We will discuss the diagram-
matic proof in the section on how the Greeks 
might have arrived at a general proof for the PT. 
What is clear is that the Chinese were not only 
aware of PT long before Pythagoras, but had many 
applications for it and came up with a pictorial 
demonstration for the (3, 4, 5) case which can be 
generalized. 

Returning to the Greeks
Having traversed the globe, let us return to the 
Greek contribution. There is no doubt that the 
Greeks were the first to bring in the notion of 
proof in mathematics. The Pythagorean School 
seems to have definitely had a proof for PT at least 

Fig. 4 - Chou Pei Suan Ching
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for rational sides. Stephen Hawking argues in [HS] 
that they had perhaps an incomplete proof for the 
general theorem, because Euclid took great pains 
to give a new and complete proof in the Elements. 
The Pythagorean School were also the first to 
prove rigorously that the square root of 2 is irra-
tional. While earlier civilizations did come up with 
approximations for 2 there is no clear evidence 
that they were aware of irrationals.

Before we conclude the Greek contribution we 
should mention Euclid’s role (approx 300 BC). 
As you perhaps know, he is the author of 
Elements, a collection of 13 books containing 465 
propositions from plane geometry, number theory 
and solid geometry. He was the first person to 
create an axiomatic framework for mathematics 
with rigorous proofs. Once again we know very 
little of Euclid, except that he worked in the great 
library of Alexandria during the rule of Ptolemy I 
(323 – 283 BC). Euclid gave two rigorous proofs of 
PT: one is the 47th proposition of Book I and the 
other is the 31st proposition of Book VI. 

Proposition VI.31 is a generalization of PT, for 
while Proposition I. 47 refers to squares con-
structed on the three sides of a right-angled 
triangle, Proposition VI.31 refers to any figure 
constructed similarly on the sides of a right-trian-
gle. For example, if semicircles are constructed on 

the sides of a right-triangle, then the area of the 
semicircle on the diagonal is equal to the sum of 
the areas of the semicircles on the other two sides.  
He was also the first to give a rigorous proof of the 
converse of PT (proposition 48 of Book I). 

Here is a lovely compliment (sourced from [HS]) a 
fellow Greek, Proclus, pays to Euclid several centu-
ries later: “If we listen to those who wish to recount 
ancient history, we may find some of them referring 
this theorem (PT) to Pythagoras and saying that he 
sacrificed an ox in honour of his discovery. But for 
my part, while I admire those who first observed the 
truth of this theorem, I marvel more at the writer of 
the Elements, not only because he made it fast by a 
most lucid demonstration, but because he compelled 
assent to the still more general theorem by the 
irrefragable arguments of science in the sixth Book. 
For in that Book he proves generally that, in right-
angled triangles, the figure on the side subtending 
the right angle is equal to the similar and similarly 
situated figures described on the sides about the 
right angle.” 

What motivated the discovery of PT?
It is a matter of great curiosity as to how human be-
ings all over the world discovered a result such as 
the PT. There are two main threads of speculation. 

Fig. 5 Fig. 6
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The first thread looks at the special isosceles right 
triangle. Historians believed that tiles as shown in 
Figure 5 would have been the inspiration for the 
mathematically curious.  

If that figure is not self evident to you, what about 
Figure 6? 

The second thread looks at the triple (3, 4, 5). 
There is evidence that the Egyptians knew the 
relation 32 + 42 = 52. However, there is no evidence 
that they knew that a triangle with side lengths 
3, 4 and 5 units was right-angled. Stephen 
Hawking and others speculate that the next jump 
in ideas took place when there was a realisation, 
much along the lines of the Chinese, that a right 
triangle with legs of length 3 and 4 has hypot-
enuse of length 5, essentially proving PT for this 
special case.

Let us see how this is done. Start with a right-
angled triangle of side lengths 3 and 4. You then 
wrap around 4 such right-triangles to form a 7 × 7 
square (see Figures 7 and 8).

Now look at the inner square that is sitting on the 
hypotenuse of each of the four triangles. 

There are two ways to see that it is 25 square 
units. One is that the original square is 49 square 
units and it is made up of two 3 × 4 rectangles 

and the inner square. The other is that the inner 
square is made of two 3 × 4 rectangles and a unit 
square. Hence we have shown that a triangle with 
legs of size 3 and 4 units has a hypotenuse of size 
5 and the PT holds for this triangle.

This method can be generalized to other right-an-
gled triangles with sides of integer lengths. For ex-
ample, take a right-angled triangle whose legs are 
of length 5 and 12. Then using the method above, 
one will get a 17 × 17 square with an inner square 
of size 13 × 13. This shows that the hypotenuse 
of such a triangle is 13 units. And using the fact 
that 52 + 122 = 132, we have once again a specific 
example of the PT. The above figure can also be 
used to establish PT for any right-angled triangle. 
Can you use algebra and prove it for yourself? 
This is essentially how Bhaskara proved PT in the 
eleventh century AD.

It is not clear if Pythagoras and others used the 
method I have just asked you to prove. As men-
tioned earlier, since Euclid gave a completely 
different proof, historians believe that Pythagoras 
might have used the method of similar triangles 
to establish PT. However since they dealt only 
with rational numbers, this proof would have 
been incomplete. 

Fig. 7
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Are you familiar with the proof of PT using similar 
triangles? If not, why don’t you give it a try? Figure 
9 will help you. It is considered the shortest proof 
of the Pythagoras theorem!

Endnote
I hope in the course of reading this article you 
have got a sense of the rich history and depth 
behind the Pythagoras Theorem and how chal-
lenging ancient history is. You probably have also 
realized that it is a quirk of fate that has named 
the most famous theorem after Pythagoras. It well 
might have been the ‘Mitharti siliptim (Square of 
the diagonal) Theorem’ from Mesopotamia or the 
‘Sulba Theorem’ from India or the ‘Kou ku Theo-
rem’ from China! So, what is in a name?
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It is always a pleasure to read a beautifully crafted proof; 
and when the proof is of the kind which uses a minimum 
of words — ‘Proofs Without Words’ as they are called — 

the pleasure is doubled. Here is one such proof, from the late 
Professor A R Rao, about whom we shall say more at the end of 
this article. It is a solution to the following problem: Show that 
the perimeter of a quadrilateral inscribed in a rectangle is not 
less than twice the diagonal of the rectangle. 

Shailesh Shirali

Proof Without 
Words 
Insight into a Math Mind: Prof. A R Rao 
Elegance, they say, cannot be defined, merely demonstrated. 

Mathematics — and mathematicians — can have incredible style. 

Read on to find out how.  
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Thus, for the rectangle ABCD in Figure 1 and its 
inscribed quadrilateral PQRS, we must show that 
PQ + QR + RS + SP ≥ 2 AC. Prof Rao’s solution makes 
extensive use of reflections. Figure 2 shows the 
constructions used.

Fig. 2, Prof. A R Rao’s proof - Can a diagram say a thousand words?

We first reflect the entire figure in line AD; the re-
sulting rectangle is AB′C′D, and the resulting quad-
rilateral is P′Q′R′S. Then we reflect the new figure 
in line CD; the resulting rectangle is A′′B′′C′D, and 
the resulting quadrilateral is P′′Q′′R′S′′. One final 
reflection is needed: we reflect the new figure in 
line B′′C′. The resulting rectangle is A′′′B′′C′D′′′, and 
the image of the quadrilateral is P′′′Q′′R′′′S′′′.

Since the length of a segment is unchanged by a 
reflection, the perimeter of PQRS is the same as 
the length of the path P–S–R′–Q′′–P′′′ (for: SR = SR′, 
RQ = R′Q′′ and so on). The endpoints of this path 
are P and P′′′. Since the shortest path joining two 

points is simply the segment which joins them, we 
can be sure of the following: 

PS + SR′ + R′Q′′ + Q′′P′′′ ≥ PP′′′.
Therefore, the perimeter of PQRS is not less than PP′′′.

Since reflection preserves length, AP = P′′′A′′′;
and as the two segments are parallel to each 
other, figure APP′′′A′′′ is a parallelogram; thus, 
PP′′′ = AA′′′. So, the perimeter of PQRS is not less 
than AA′′′′.

But AA′′′ is simply twice the diagonal of ABCD! It 
follows that the perimeter of PQRS is not less than 
twice the diagonal of ABCD. And that’s the proof! 

Fig. 1, Quadrilateral in a rectangle
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Prof A R Rao, 23 September 1908 to 11 April, 
2011. This is a picture from his 98th birthday  
celebrations. Naturally, it is a maths lecture!
Study the 4 × 4 magic square shown (Prof Rao 
seems to be telling us just that!) and work out 
how it has been formed.

Professor A R Rao (1908–2011), Teacher Extraodinaire . . . 

Fig. 3, Source of photo: http://www.vascsc.org

Professor A R Rao was an extraordinary teacher and 
professor of mathematics whose life spanned an entire 
century. He taught in various colleges in Gujarat, and 
then worked as Professor Emeritus for the last three de-
cades of his life at the Vikram A. Sarabhai Community 
Science Centre in Ahmedabad. He established a Math-
ematics Laboratory at this Centre, filled with all kinds 
of puzzles, games, mathematical models and teaching 
aids. He was amazingly creative with his hands, and 
just as creative in his ability to come up with beautiful 
solutions to problems in geometry. He had a deep love 
for Euclidean and projective geometry, and also for 
combinatorics and number theory. He was the recipi-
ent of numerous awards for popularizing mathematics. 
He was deeply revered and loved by large numbers of 
mathematics teachers and students across the country. 

For a moving account of his life and career, reference 
(1) is highly recommended. Reference (2) is from the 
website of the Vikram Sarabhai centre. Reference (3) 
is about a remarkable theorem in geometry (the ‘Pizza 
Theorem’) for which Professor Rao found a beautiful 
proof using only concepts from high school geometry.



At Right Angles  | Vol. 1, No. 1, June 2012  16

References
1. C R Pranesachar, Professor A R Rao. Can be downloaded from:  

http://www.ramanujanmathsociety.org/mnl/BackIssues/mnl-v21-jun11-i1.pdf
2. http://www.vascsc.org/about_arr.html
3. Shailesh Shirali, A Pizza Saga. Can be downloaded from: http://www.ias.ac.in/resonance/May2011/p437-445.pdf

ShAileSh ShiRAli is head of the Community Mathematics Centre which is housed in Rishi Val-
ley School (AP). he has been in the field of mathematics education for three decades, and has 
been closely involved with the Math Olympiad movement in india. he is the author of many 
mathematics books addressed to high school students, and serves as an editor for the under-
graduate science magazine Resonance. he is currently engaged in outreach projects in teacher 
education in his locality. he is also a keen nature enthusiast and enjoys trekking and looking 
after animals. he may be contacted at shailesh.shirali@gmail.com.

Prof A R Rao, 23 September 1908 to 11 April, 
2011. This is a picture from his 98th birthday  
celebrations. Naturally, it is a maths lecture!
Study the 4 × 4 magic square shown (Prof Rao 
seems to be telling us just that!) and work out 
how it has been formed.

Professor A R Rao (1908–2011), Teacher Extraodinaire . . . 

Fig. 3, Source of photo: http://www.vascsc.org

Professor A R Rao was an extraordinary teacher and 
professor of mathematics whose life spanned an entire 
century. He taught in various colleges in Gujarat, and 
then worked as Professor Emeritus for the last three de-
cades of his life at the Vikram A. Sarabhai Community 
Science Centre in Ahmedabad. He established a Math-
ematics Laboratory at this Centre, filled with all kinds 
of puzzles, games, mathematical models and teaching 
aids. He was amazingly creative with his hands, and 
just as creative in his ability to come up with beautiful 
solutions to problems in geometry. He had a deep love 
for Euclidean and projective geometry, and also for 
combinatorics and number theory. He was the recipi-
ent of numerous awards for popularizing mathematics. 
He was deeply revered and loved by large numbers of 
mathematics teachers and students across the country. 

For a moving account of his life and career, reference 
(1) is highly recommended. Reference (2) is from the 
website of the Vikram Sarabhai centre. Reference (3) 
is about a remarkable theorem in geometry (the ‘Pizza 
Theorem’) for which Professor Rao found a beautiful 
proof using only concepts from high school geometry.

Vol. 1, No. 1, June 2012  | At Right Angles 17

Shape, Size, Number and Cost 

A Sweet 
Seller’s Trick 
Analyzing Business through Math
How much math can there be in two bowls of gulab jamun?  Prithwijit De models, 

estimates, calculates and presents a convincing argument on which of the two 

products earns the sweetseller a greater profit.  

Prithwijit De
Gulab jamuns are a popular sweet in India, often sold singly 
or two to a bowl. However, I was recently intrigued when the 
sweet shop across the road from my institute’s canteen intro-
duced a bowl of three gulab jamuns at a competitive price. The 
sweet lovers in my office immediately changed loyalties but the 
price conscious stayed with the canteen. 

What motivated this competitive strategy from the shop across 
the road?  Being a mathematician, I naturally had to solve the 
problem and in typical fashion, I called my canteen walla 
‘Mr. X’ and the sweet shop owner ‘Mr. Y’. Here is my mathema-
tised version of the situation.

Mr. X sells two pieces of gulab jamun at `p1 per piece, in a cylin-
drical cup of cross-sectional radius R. The pieces are spherical
in shape and they touch each other externally and the cup in-
ternally. Mr. Y, a competitor of Mr. X, sells three pieces of gulab 
jamun in a cup of the same shape and size used by Mr. X, and he 
charges a price of  `p2 per piece. Snapshots of their offerings
are displayed in Figure 1, and top-down views are shown in 
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Figure 2. Certainly p2 has to be less than p1 since 
price is directly proportional to size if the mate-
rial is kept the same. A person buying from Mr. X 
would be paying 2p1 and a person buying from Mr. 
Y would be paying 3p2.

Listen to some of the conversations I overheard 
while working on a particularly difficult problem 
in differential geometry: “Mr. X is charging  `6 
for a gulab jamun! So one bowl with two gulab 
jamuns from his shop costs only  `12!” “A bowl at 
Mr. Y’s shop costs  `15 but I get 3 pieces. So it’s 
only  `5 per gulab jamun and the bowls are of the 
same size.” “Yes …but the 3 gulab jamuns in the 
same bowl are smaller!  I get 2 bigger gulab ja-
muns at a cheaper price! ” As you can see we have 
serious and weighty discussions in my office.

Thinking deeply about this, I finally reduced the 
problem to two main questions. 
1. Which of the two cups contains a greater 

amount of sweet? 
2. Which sweetseller makes a greater profit 

if the cost of producing unit volume of the 
sweet is the same?

The sweets are sold in a cylindrical cup of 
cross-sectional radius R. The pieces are spherical 
in shape and they touch each other externally 
and the cup internally.

The radius r1 of each piece in Figure 2 (I) is 2

1 R. 
The total volume V1 of sweet in the cup is there-
fore:

 
2 .

R R
3

4

2 3

3 3r r
=`c j m

To find the volume of a piece in Figure 2 (II) we must 
find the radius of each sphere.

In the two dimensional representation of the 
configuration (Figure 2 (II)) the spheres become 
circles and the cylindrical cross-section turns into 
a circle circumscribing the three circles. The task 
of finding the radius of the sphere thus reduces to 
finding the common radii of the inner circles. The 
triangle formed by joining the centres of the inner 
circles (Figure 3) is an equilateral triangle whose 
centroid is the centre of the large circle. If r2 is the 
radius of an inner circle then the length of the side 
of the triangle is 2r2 and

Fig. 1

Fig. 2
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Now one asks, who is giving more sweet and by 
how much?  Note that
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So Mr. Y is giving about 20% more sweet than Mr. 
X. From a buyer’s perspective this is a good deal. 
S/he may be paying more per cup but the per 
piece price is still less as p2 < p1.

If Mr. X charges `6, then a bowl costs `12. If Mr. Y 
charges `5, then a bowl costs `15 but it will have 
20.48% more sweet than a bowl from Mr. X and 
the price per piece is still less at Mr. Y’s.

But from a seller’s perspective is it really worth it?  
Assuming that the cost of producing unit volume 
of the sweet is the same, c (say), in both cases, is it 
possible for Mr. Y to price a piece in such a way so 
as to ensure greater profit than Mr. X?

The selling price per unit volume is the cost of one 
bowl divided by the volume of sweet given, so the 
profit at each shop is

cost of one bowl

volume of sweet given
– cost per unit volume.

To find out which shop makes greater profit, we 
therefore study the following inequality: 

(2)
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This is equivalent to
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By virtue of (1) this is equivalent to p2 > 0.8p1.

Thus, if Mr. Y chooses p2 such that 0.8p1 < p2 < p1, 
then he makes greater profit than Mr. X despite 
reducing the size and price of the sweet. 

For instance, if Mr. X charges `6 per piece then 
Mr. Y can set the price anywhere between `4.80 
and `6 per piece in order to beat his rival in the 
money-making game (see Table 1). The buyer, in 
all probability, will be happy to pay less per piece 
and get three instead of two, as the more the mer-
rier is likely to be his/her motto. 
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Remember that the volume of the bowl is the
same in both cases; so the buyer will probably
go to Mr. Y in order to get 3 gulab jamuns at a
slightly higher price. Mr. Y gets more customers
and a greater pro�it on each bowl!
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Many Ways to QED 

The Pythagorean 
Theorem
Taking note of a collective of contributors
How do I prove thee?  Can I count the ways?  A look at the wide variety of 

methods used to prove the theorem of Pythagoras.  

Not only is the theorem of Pythagoras (‘PT’ for short) the best 
known mathematical theorem of any kind, it also has the record 
of having been proved in a greater number of ways than any 
other result in mathematics, and by a huge margin: it has been 
proved in more than three hundred and fifty different ways! 
(So the relation between the PT and the rest is a bit like the 
relation between Sachin Tendulkar and the rest ….) There is 
more: though by name it is inextricably linked to one particular 
individual (Pythagoras of ancient Greece), as a geometric fact it 
was independently known in many different cultures. (See the 
article by J Shashidhar, elsewhere in this issue, for more on the 
history of the PT.) We do not know whether they proved the 
theorem and if so how they did it, but they certainly knew it 
was true!  

In this article we describe a few proofs of this great and 
important theorem.
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Statement of the PT
Here is how Euclid states it: In a right triangle, 
the square on the hypotenuse equals the sum of 
the squares on the two legs of the triangle. (‘Right 
triangle’ is a short form for ‘right-angled triangle’. 
The ‘legs’ of a right triangle are the two sides 
other than the hypotenuse.) Thus, in Figure 1(i) 
where \A is a right angle, we have: 

Square BHIC = Square ADEB + Square ACFG.

The way we state the theorem nowadays is: In a 
right triangle, the square of the hypotenuse equals 
the sum of the squares of the two legs of the tri-
angle. Note the change: ‘on’ has been replaced by 
‘of ’. Therefore: In Figure 1(ii), a2 = b2 + c2. This is not 
merely a change of language. In Euclid’s version, 
it is a statement about areas; in the latter one, it 
is a statement about lengths. Of course the two 
versions are equivalent to one another (thanks to 
the formula for area of a square), and both offer 
opportunities for generalization; but the second 
one tells us something about the structure of the 
space in which we live. Today, this is the preferred 
version.

Euclid’s proof
This has been sketched in Figure 2. The descrip-
tion given alongside gives the necessary steps, 

and we shall not add anything further here. Note 
that the reasoning is essentially geometrical, using 
congruence theorems. No algebra is used.

Bhaskara II’s proof
The proof given by Bhaskara II, who lived in the 
12th century in Ujjain, is essentially the same as 
the one described in the origami article by V S S 
Sastry elsewhere in this issue; but the triangles 
are stacked differently, as shown in Figure 3. Let 
a right 3ABC be given, with \A = 90°; let sides BC, 
AC, AB have lengths a, b, c.

The argument given in Figure 3 shows that 
(b + c)2 = 4 × (

2

1 bc) + a2, and hence that a2 = b2 + c2. 
Note that all we have done is to ‘keep accounts’: 
that is, account for the total area in two different 
ways. 

Bhaskara’s proof is a beautiful example of a ‘proof 
without words’. The phrase ‘without words’ is not 
be taken too literally; words are certainly used, 
but kept to a minimum. We shall see many more 
examples of such visual proofs in future issues of 
this magazine.

Properly speaking, we must justify certain claims 
we have made in this proof (and this, typically, 
is the case for all proofs-without-words); for 

Fig 1:
Two contrasting versions of 
Pythagoras’s theorem. 
In (i), Square BHIC =Square 
ACFG + Square ADEB;
In (ii), a2 = b2 + c2
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example: (i) why the ‘hole’ is a square with side 
a, (ii) why the entire figure is a square with side 
b + c. For this we must show that angles which 
‘look like right angles’ are indeed right angles, and 
angles which ‘look like straight angles’ are indeed 
straight angles. But these justifications are easily 
given — please do this on your own.

According to legend, Bhaskara did not offer any 
explanations (we presume therefore that he 
agreed with the philosophy of a proof without 
words); he simply drew the diagram and said 
“Behold! ” — assuming no doubt that the reader 
would be astute enough to work out the details 
mentally, after gazing for a while at the diagram! 

Garfield’s proof
The proof given by James Garfield in 1876 is of a 
similar nature. Garfield was a US Senator at the 
time he found the proof, and later (1881) became 
President of the USA. Unfortunately he fell to an 
assassin’s bullet later that same year, and died a 
slow and painful death.

Garfield’s argument is sketched in Figure 4. The 
trapezium has parallel sides of lengths b and c, 
and the perpendicular distance between them is 
b + c; its area is therefore 

2

1 (b + c)2. The two right 
triangles have area 

2

1 bc each. Hence we have:
2

1 (b + c)2 = bc + 
2

1 a2. On simplifying this we get 
a2 = b2 + c2.

Fig. 2 Euclid’s proof, which uses standard geometrical results on congruence

Fig. 3 The proof by Bhaskara II. See reference (1) for details
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A proof based on similarity
Next, we have a proof based on similarity of tri-
angles, also given by Euclid in his text Elements.

Figure 5 depicts the right triangle ABC in which
\A = 90°, with a perpendicular AD drawn from A 
to the base BC. The two angles marked u are equal, 
as are the two angles marked v. So we have the 
similarities 3ABC ~ 3DBA ~ 3DAC, and we deduce 
that 

 
, .BA

BD
CB
AB

a
c

AC
DC

BC
AC

a
b

= = = =

These imply that

 a a a ac , .BD c c DC b b b2 2

# #= = = =

Since BD + DC = a, we get

 a a ,ac b2 2

+ =

so a2 = b2 + c2.

Observe that this proof yields some additional re-
lations of interest; for example, AD2 = BD × DC, and 
BD : DC = AB 2 : AC 2.

Fig. 5  

 Fig. 6  Proof #63 from the compilation by E S Loomis (reference 3)

Fig. 4   The proof by Senator Garfield. See reference (2) for details.



At Right Angles  | Vol. 1, No. 1, June 2012  24

A proof based on the intersecting chords 
theorem
Next, we have a lovely proof based on the inter-
secting chord theorem (“If UV and LM are two 
chords of a circle, intersecting at a point T, then 
UT  ×  VT = LT  ×  MT ”), which is a well known result 
in circle geometry (and, importantly, its proof 
does not depend on the PT). The construction and 
proof are fully described in Figure 6.

Another proof based on the intersecting 
chords theorem
A corollary of the intersecting chords theorem is 
the following: “If from a point P outside a circle, a 
tangent PT is drawn and also a secant PQR, cutting 
the circle at Q and R, then PQ  ×  PR = PT 2.” We may 
use this to get yet another proof. The details have 
been given in Figure 7.

Are these proofs really different from 
one another? 
Yes, indeed! Euclid’s proof is about the geometric 
notion of area; it uses standard theorems of con-
gruence, and does not require any algebraic ideas 
whatever. Bhaskara’s proof too uses the notion 

of area, but requires: (i) the fact that the area of 
a rectangle with sides x and y is xy (and therefore 
that the area of a right triangle with legs x and y is 
2

1 xy, and the area of a square of side s is s2 );
(ii) the formula for the expansion of (b + c)2. Like-
wise for Garfield’s proof. Finally, the proof by simi-
larity and the two proofs based on the intersecting 
chords theorem have nothing to do with area at 
all!  — they deal with lengths, and it is purely by 
algebraic manipulations that the relation a2 = b2 + c2 
emerges.

References
1. http://www.robertnowlan.com/pdfs/Bhaskara.pdf
2. http://nrich.maths.org/805 (for the proof by Senator 

Garfield)
3. Elisha S Loomis, The Pythagorean Proposition, NCTM, 
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4. http://www.cut-the-knot.org/pythagoras/index.shtml

Reference (3) contains no less than 371 proofs of the PT, 
and 96 of these are given in reference (4)! 

 Fig. 7 Another proof based on the intersecting chords theorem
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Fujimoto’s Approximation Method

How do you 
Divide a Strip 
into Equal Fifths?
How can a simple series of folds on a strip of paper be a mathematical exercise? 

The article describes not only the how but also the why….. 

Shiv Gaur

A key principle for learning mathematics is to move from 
the concrete to the abstract, which implies having “ac-
tive  mathematical experiences” first. Paper folding is 

one avenue for such experiences. Concepts of perpendicularity, 
parallelism, similarity, congruence and symmetry are easily 
experienced through paper folding activities and provide an 
experiential base for further learning. Paper folding also lends 
itself readily to explorations, visual proofs and constructions. 
Angle trisection and doubling of a cube which are not possible 
with straight edge and compass and the traditional rules of 
Euclidean constructions are possible using paper folding.  

Origami (Japanese-ori: to fold; kami: paper) is the art of paper 
folding. By a sequence of folds, a flat piece of paper is turned 
into an animal, flower or a box. In addition to conventional fold-
ing (Flat Origami), the art encompasses such genres as Modular 
Origami (many identical units combined to form decorative 
polyhedra), and Composite Origami (objects folded from two or 
more sheets of paper). Origami also provides a highly engag-
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ing and motivating environment within which 
children extend their geometric experiences and 
powers of spatial visualization.

In 1893 T. Sundara Row published his book 
“Geometric Exercises in Paper Folding” which 
is considered a classic and still in print. In the 
development of Origami over the years a number 
of ideas and techniques have emerged which have 
mathematical underpinnings, such as Haga’s theo-
rems, the Huzita-Hatori Axioms and Fujimoto’s 
Approximation Method to name a few.

In origami it is very common to fold the side of 
a  square piece of paper into an equal number of 
parts. If the instructions for a particular model 
ask for it to be folded in half or into quarters or 
eighths, then it’s easy to do so. The difficulty arises 
if they ask for an equal fifths or any equal ‘odd’ 
number of folds. Thankfully there is an elegant 
and popular method called Fujimoto’s Approxi-
mation Method. Here are the steps for dividing a 
strip of paper into equal fifths. The photographs 
are included to show the steps more clearly.

Step 01: Make a guess pinch where you may think 
5

1

 might be, say on the left side of the paper.

Step 02: To the right side of this guess pinch is approximately 
5

4

 of the paper. Pinch this side in half.
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Step 03: The last pinch is near the 5

3

 mark from the left side. To the right side of this is approximately 
5

2  
of the paper. Pinch this side in half.

Step 04: Now you have a 5

1

 mark on the right. To the left of this is approximately 
5

4  . Pinch this side in half.

Step 05: This gives a pinch (the dotted line) close to the 
5

2  mark from the left. Pinch the left side of this in 
half. This last pinch will be very close to the actual 

5

1  mark!

The set of 3 long dashed lines is the last pinch mark very close to the guess pinch and a better approxi-
mation of 

5

1  than the original guess pinch.

Iteration of the last four steps starting with the last pinch as the new guess mark helps in finding the 
fifth mark. The closer the “guess pinch” is to the actual fifth, the fewer the number of iterations.
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Why does this work?
Naturally, the question arises: Why does this work? 
Regarding the strip as 1 unit in length, the initial 
“guess pinch” can be thought of as being at 
distance

 
e

5

1
+

from the left side, where e represents the initial 
error. (This could be positive or negative, depend-
ing on which side we have erred.)  Now with each 
subsequent fold the error gets halved!

For, in steps 2, 3, 4 and 5, we find that the distanc-
es of the latest pinch folds from the left side are, 
respectively (please verify this):
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The sign of the error alternates between plus and 
minus. The crucial part is that the last error is 16
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of the original one! So each round of this proce-
dure brings down the error by a factor of 16.

Observe that we have traversed pinch marks 
which cover all the multiples of 

5

1 . 

Another question is, what would be the procedure 
for folding a paper into n equal parts, where n is a 
given odd number?

The general idea in the Fujimoto algorithm is to 
make an approximate n

1  pinch, say from the left 
hand side.  The crease line can be viewed as a frac-
tion of the paper, either from the left side or the 
right side. Since n is odd, just one of the two frac-
tions will have an even numerator. To get the next 
crease line, we fold in half that part of the strip 
from that edge of the paper which corresponds to 
the even numerator, to the latest crease line. Even-
tually we will reach a pinch mark which provides 
a new, more accurate approximation for n

1  of the 
paper, since the error gets reduced by half each 
time the paper is folded in half.

Now try on your own to get a similar method for 
folding into equal thirds.

Fujimoto’s method provides an insight into why 
clumsy origami folders manage to do a fairly good 
job of models with intricate folds!

Appendix: 
Who is Shuzo Fujimoto?

Fujimoto described this approximation method in a book written in Japanese and published in 1982 (S. Fujimoto 
and M. Nishiwaki, Sojo Suru Origami Asobi Eno Shotai (“Invitation to Creative Origami Playing”), Asahi Culture 
Center, 1982). Read what has been written about Fujimoto at this link: http://www.britishorigami.info/academic/
lister/tessel_begin.php.

A B.Ed. and MBA degree holder, ShiV GAuR worked in the corporate sector for 5 years and then 
took up teaching at the Sahyadri School (KFi). he has been teaching Math for 12 years, and is cur-
rently teaching the iGCSE and iB Math curriculum at Pathways World School, Aravali (Gurgaon).  he 
is deeply interested in the use of technology (Dynamic Geometry Software, Computer Algebra Sys-
tem) for teaching Math. his article “Origami and Mathematics” was published in the book “ideas 
for the Classroom” in 2007 by East West Books (Madras) Pvt. Ltd. he was an invited guest speaker 
at iiT Bombay for TiME 2009. Shiv is an amateur magician and a modular origami enthusiast. he 
may be contacted at shivgaur@gmail.com
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The relation a2 + b2 = c2 is so familiar to us that we often 
quote it without saying what a, b, c represent!  And this, 
no doubt, is because the Pythagorean theorem is so well 

known. We know that if a, b, c are the sides of a right angled tri-
angle, with c as the hypotenuse, then a2 + b2 = c2. We also know, 
conversely, that if a, b, c are positive numbers which satisfy this 
relation, then one can construct a right angled triangle with legs 
a, b and hypotenuse c. Because of this association, we
call a triple (a, b, c) of positive integers satisfying this relation a
Pythagorean triple, PT for short. But such triples have addi-
tional properties of interest that have nothing to do with their 
geometric origins; they have number theoretic properties, and 
we will be studying some of them in this and some follow up 
articles. 

The most well known PT is the triple (3, 4, 5). Since its num-
bers are coprime — i.e., there is no factor exceeding 1 which 
divides all three of them — we call it ‘primitive’, and the triple 

Using Fractions, Odd Squares, 
Difference of Two Squares 

How to Generate 
Pythagorean 
Triples -1 
Exploring different generative methods 
Generating Primitive Pythagorean Triples can introduce students to 

number theoretic properties, enhance logical reasoning and encourage 

students to find answers to their ‘whys’.  
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is called a primitive Pythagorean triple or PPT 
for short. In this article we explore some ways of 
generating PPTs.

Note. Throughout this article, when we say ‘number’
we mean ‘positive integer’. If we have some other 
meaning in mind, we will state it explicitly.

What is a ‘number theoretic’ property? 
Before proceeding we must state what we mean 
by a ‘number theoretic’ property. Below, we list 
six such properties about numbers. On examin-
ing them you should be able to make out what is 
meant by the phrase ‘number theoretic property’.
(We have not justified the statements; we urge 
you to provide the proofs.)

1. The sum of two consecutive numbers is odd.
2. The sum of two consecutive odd numbers is a 

multiple of 4.
3. The sum of three consecutive numbers is a 

multiple of 3.
4. An odd square leaves remainder 1 when di-

vided by 8.
5. The square of any number is either divisible by  

3, or leaves remainder 1 when divided 
by 3.

6. The sum of the first n odd numbers is equal 
to n2. 

In contrast, here are some statements which are 
true for any kind of quantity, not just for positive 
integers: For any two quantities a and b we have:

 a2 – b2 = (a – b) · (a + b),

 a3 – b3 = (a – b) · (a2 + ab + b2),

 a2 + b2 ≥ 2ab.

These statements are true even if a and b are not 
integers. But statements (1) – (6) presented earlier 
have no meaning if the numbers involved are not 
integers.

Generating PPTs
We have already given(3, 4, 5) as an example of 
a PPT. How do we generate more such triples?  
Below we describe four ways of doing so. The first 
three are presented without justification; we do 
not show how we got them, but they are fun to 
know!  In the case of the fourth one, we derive 
it in a logical way.

Method #1: Using Odd Squares
This method is often found by students who like 
to play with numbers on their own, and it is per-
haps the simplest way of generating Pythagorean 
triples. 

Select any odd number n > 1, and write n2 as a sum 
of two numbers a and b which differ by 1 (here b is 
the larger of the two numbers); then (n, a, b) is a  
PT; indeed, it is a PPT. 

Examples
• Take n = 3; then n2 = 9 = 4 + 5, so a = 4, b = 5. 

The triple is (3, 4, 5).

• Take n = 5; then n2 = 25 = 12 + 13, so a = 12, b = 13.
The triple is (5, 12, 13).

• Take n = 7; then n2 = 49 = 24 + 25, so a = 24, b = 25.
The triple is (7, 24, 25).

• Observe that each triple generated here has the 
form (n, a, a + 1) where 2a + 1 = n2.

Exercises.
(1.1) Justify why this procedure yields PTs.  
(1.2) Justify why these PTs are PPTs.  
(1.3) Find a PPT which cannot be generated by  
 this method.

Method #2: Using Unit Fractions With 
Odd Denominator
Of all the methods one generally sees, this one is 
perhaps the strangest!  

Let n be any odd number. Compute the sum 
n n
1

2

1
+

+  and write it in the form b
a

 
where a, b  are 

coprime. Then (a, b, b+2) is a PPT.

Here are some PPTs generated using this method.

• Take n = 1; then n + 2 = 3, and 
1

1

3

1

3

4
+ = .

 We get the PPT (4, 3, 5).

• Take n = 3; then n + 2 = 5, and 
3

1

5

1

15

8
+ = .

 We get the PPT (8, 15, 17).

• Take n = 5; then n + 2 = 7, and 
5

1

7

1

35

12
+ = .

 We get the PPT (12, 35, 37).

• Take n = 7; then n + 2 = 9, and 
7

1

9

1

63

16
+ = .

 We get the PPT (16, 63, 65).
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Exercises.
(2.1) Justify why this yields PTs.  
(2.2) Explain why these PTs are PPTs.  
(2.3) Find a similar method that uses the even  
 positive integers.  
(2.4) Find a PPT which cannot be generated by  
 this method.

Method #3: Using Mixed Fractions
In the same way that we used unit fractions we 
may also use mixed fractions. We write the follow-
ing sequence of mixed fractions: 

, , , , , ,1 2 3 4 5 6 ....
3

1

5

2

7

3

9

4

11

5

13

6

The pattern behind the sequence should be clear. 
Now we write each fraction in the form b

a ; i.e., we 
write each one as an ‘improper’ fraction. We get: 

, , , , , , ....
3

4

5

12

7

24

8

40

11

60

13

84

Examining these fractions, we see quickly that if b
a  

is a fraction in the sequence, then (b,  a,  a + 1) is a 
PPT. So we get the following PPTs: 

(3, 4, 5),    (5, 12, 13),    (7, 24, 25),    (9, 40, 41),    
(11, 60, 61),    (13, 84, 85),

…. Strangely, we have obtained the same PPTs that 
we got with the first method.

Exercises.
(3.1) Justify why this yields PTs.  
(3.2) Explain why it yields the same PTs that we  
 obtained by Method #1.  
(3.3) Explain why these PTs are PPTs.  
(3.4) Find a PPT which cannot be generated by  
 this method.

Remark
All these are ‘ad hoc’ methods; in no case do we 
give any hint as to how we got the method. In con-
trast, here is a method which we actually derive. 
And that is surely so much more satisfactory.

Method #4: Using the Difference of Two 
Squares Formula
The equation a2 + b2 = c2 looks more friendly when 
written as a2 = c2 − b2, because on the right side we 
see a difference of two squares: an old friend!   
Now if we write the equation in factorized form as

(1) a2 = (c – b) · (c + b)

then our chances of success look brighter. Let us 
solve the equation in this form.

To make progress, let us arbitrarily put c − b = 1 
and explore what happens. The relation implies 
that b,  c are consecutive integers; and from (1) we 
get a2  = c + b. Since a2  is a sum of two consecutive 
integers, it is an odd number. So if we take an odd 
square and express it as a sum of two consecutive 
integers, it ought to yield a Pythagorean triple. It 
does — and this is exactly our Method #1! 

To put this idea into action, we select a number 
n and consider the odd square
(2n + 1)2 = 4n2 + 4n + 1. We write it as a sum b + c of 
two consecutive integers: 

 b = 2n2 + 2n, c = 2n2  + 2n + 1.

These values correspond to the following identity:

 (2n + 1)2  = (2n2 + 2n + 1)2  − (2n2 + 2n)2 , 

and they yield the following PT: 

 (2n + 1, 2n2 + 2n,  2n2 + 2n + 1) .

Here are some PTs generated using this method 
(you will see that they are all PPTs): 

The PPTs generated by this scheme have the fea-
ture that the largest two entries are consecutive 
numbers. 

You will naturally want to ask: What was the need 
to insist that c − b = 1?  None at all!  We need not 
have imposed the condition. Let us examine what 
happens if we change it to c − b = 2; this means that 
b and c differ by 2. Now we get: 

a2 = 2(c + b).

From this we see that a2 is an even number; there-
fore a is even, and a=2n for some number n, giving 
2

1 a2 = 2n2. Does this yield a solution? Yes. To put 
the scheme into action, we select a number n and 

n 1 2 3

PPT (3, 4, 5) (5, 12, 13) (7, 24, 25)

n

PPT

4

(9, 40, 41)

5

(11, 60, 61)

6

(13, 84, 85)
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write 2n2 as a sum b + c of two integers differing 
by 2; we get: 

 b = n2 − 1,   c = n2 + 1,   b + c = 2n2.

These values correspond to the following 
identity:

 (2n)2 = (n2 + 1)2 − (n2 − 1)2,

and they yield the following PT:

 (2n, n2 – 1, n2 + 1).

Here are some PTs generated this way (starting 
with n = 2 since n = 1 yields b = 0):

We see that when n is odd, the method yields PTs 
whose numbers are all even, so they are not PPTs. 
But if n is even we do get PPTs.

Observe what we have accomplished: simply by 
imposing the conditions c − b = 1 and c − b = 2, we 
obtained two distinct families of PTs. It seems 
reasonable to expect that by changing these condi-
tions to c − b = 3, c − b = 4, and so on, we should be 
able to generate new families of PTs. But we leave 
the exploration to you. There is much to discover 
along the way, maybe some which will surprise us, 
and much to prove ….

Remarks
Methods #1 – #3 yield infinitely many Pythagorean 
triples, but these constitute only a small subset 
of the full family of PTs. Method #4 does seem to 
have the potential to yield the entire family, but 
we have left the details to you.

In Part II of this article we shall examine how to 
generate the entire family of PPTs in a systematic 
and unified manner.

4

(8, 15, 17)

n

PPT

n

2

(4, 3, 5)

5

3

(6, 8, 10)

6

PPT (10, 24, 26) (12, 35, 37)
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Primitive Pythagorean Triples

How Many Primitive 
Pythagorean Triples in 
Arithmetic Progression?
A simple investigation and a convincing proof based on a novel connection between 

two topics — the Pythagorean Theorem and Sequences — taught in middle and 

high school.  

Everyone knows that (3, 4, 5) is a Pythagorean triple (‘PT’); 
for, the numbers satisfy the Pythagorean relation 32 + 42 = 52. 
Indeed, it is a Primitive Pythagorean triple (‘PPT’) since the 
integers in the triple are coprime. (See the Problem Corner for 
definitions of unfamiliar terms.)

But this triple has a further property: its entries are in arithme-
tic progression for, 3, 4, 5 forms a three-term AP with common 
difference 1. Naturally, our curiosity is alerted at this point, and 
we ask: 

Is there any other PPT whose entries are in AP?  

Surprisingly, no other such triple exists. Let us show why. 

Suppose there does exist a PPT with entries in AP. Let the 
common difference of the AP be d, and let the PPT be
(a − d,  a,  a + d ); here a and d are positive integers with no com-
mon factor exceeding 1. (If a and d had a common factor ex-
ceeding 1 then this factor would divide all three of the numbers 
a − d,  a,  a + d, and the triple would no longer be primitive.)
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By definition the numbers a − d,  a,  a + d satisfy the equation

(a − d )2 + a2 = (a + d )2.

Expanding all the terms we get: 2a2–2ad + d 2 = a2 + 2ad + d 2, and hence:

a2 = 4ad.

Since a > 0 we may safely divide by a on both sides; we get:

a = 4d.
So d is a divisor of a. Since a and d are supposed to have no common divisor other than 1, it must be that d = 1. 
Hence a = 4, and the triple we seek is (3, 4, 5). Therefore: 

(3, 4, 5) is the only PPT whose numbers are in AP. 

Take the number 220; its proper divisors (i.e., its divisors excluding 
itself) are:

1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110,

and the sum of these numbers is 284 (please check!). Now we do the 
same for the number 284. Its proper divisors are: 1, 2, 4, 71, 142, 284,

and the sum of these numbers is 220. How curious! – the sum of the 
proper divisors of 220 is 284, and the sum of the proper divisors of 
284 is 220.

Pairs of positive integers with such a property are called amicable 
numbers. The Greeks knew of this pair of numbers. They named them 
‘amicable’, saying to themselves that true friendship between people 
should be like the relationship between a pair of amicable numbers!

Such number pairs are not easy to find, even if one uses a computer. 
Here is another such pair, found in the ninth century by the Arab 
mathematician ibn Qurra: {17296, 18416}.

More such pairs of numbers are known now. It has been noticed 
that in all these pairs, the numbers are either both odd or both even. 
Whether there exists any pair of amicable numbers with opposite 
parity is not known.

Question. We pose the following to you: How would you check that 
17296 and 18416 form an amicable pair? What is the easiest way to 
carry out such a check?

We’ll reveal the answer in a future issue
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should be like the relationship between a pair of amicable numbers!

Such number pairs are not easy to find, even if one uses a computer. 
Here is another such pair, found in the ninth century by the Arab 
mathematician ibn Qurra: {17296, 18416}.

More such pairs of numbers are known now. It has been noticed 
that in all these pairs, the numbers are either both odd or both even. 
Whether there exists any pair of amicable numbers with opposite 
parity is not known.

Question. We pose the following to you: How would you check that 
17296 and 18416 form an amicable pair? What is the easiest way to 
carry out such a check?

We’ll reveal the answer in a future issue
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With what relief a student uses the simple formula 
‘Area of a triangle = 

2

1 base × height ’ !  Though 
Heron’s formula for the area in terms of its three 

sides has a pleasing symmetry convenient for memorization, it 
often seems cumbersome in comparison. A look at how this for-
mula is derived will perhaps enable the student to remember 
and appreciate the formula, not for this reason but for the sheer 
elegance of the derivation.

The formula is well known: if the sides of the triangle are 
a, b, c, and its semi-perimeter is s = 

2

1 (a + b + c), then its area
∆ is given by

.s s a s b s c– – –T = ^ ^ ^h h h

We present two proofs of the theorem. The first one is a con-
sequence of the theorem of Pythagoras, with lots of algebra 
thrown in. It is striking to see how heavily the humble ‘differ-
ence of two squares’ factorization formula is used. 

Heron’s Formula for Area of a Triangle 

One Formula - 
Two Derivations 
Cleverly used algebra in an old familiar formula for the area of a triangle 

in terms of its base and height enables the formula to be restated in terms 

of the sides of the triangle. An account of the derivation.  

fe
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Proof based on the theorem 
of Pythagoras
The proof has been described with reference to 
Figure 1 (I) and Figure 1 (II). Given the sides a, b, c 
of 3ABC, let the altitude AD have length h. The 
area of 3ABC is 

2

1 ah. To find h in terms of a, b, c 
we use Pythagoras’s theorem. Let BD = x, DC = a − x. 
(The notation does not imply that x must lie
between 0 and a. Indeed, if \B is obtuse then x < 0, 
and if \C is obtuse then x > a. See Figure 1 (II). 
Please draw your own figure for the case when 
x > a.) Then:

 h2 + x2 = c2,    h2 + (a – x)2 = b2.

Subtract the second equation from the first one:

 2ax – a2 = c2 – b2,    ∴ x = –
.a

c a b
2

2 2 2
+

Since h2 + x2 = c2, this yields:
 

 
h c a

c a b
2

–
–2 2

2 2 2 2

=
+c m

 
c a

c a b c a
c a b

2 2
–

– –
2 2 2 2 2 2

#=
+

+
+c cm m

 
2 – –

,a
ac c a b

a
ac c a b

2 2

2 –
2 2 2 2 2 2

#=
+ + +

∴ 4a2h2 = (2ac – c2 – a2 + b2) × (2ac + c2 + a2 – b2).

The area of the triangle is ∆ = 
2

1 ah, so 16∆2 = 
4a2h2, i.e. :

16∆2 = (2ac – c2 – a2 + b2) × (2ac + c2 + a2 – b2).

 = [b2 – (c – a)2 ] × [(c + a)2 – b2]

 = (b – c + a) (b + c – a) (c + a + b) (c + a – b)

 = (2s – 2c) (2s – 2a) (2s) (2s – 2b),

∴∆2 = s (s – a) (s – b) (s – c),

therefore .s a s b s c– – –T = ^ ^ ^h h h

Another proof
We now present an entirely different proof. It is 
based on a note written by R Nelsen (see refer-
ence (1)) and uses two well known results:

•	 If  , ,a b c  are three acute angles with a sum of 
90°, then

(1)    tana  tanb  + tanb  tanc  + tanc  tana  = 1.

Nelsen gives a ‘proof without words’ but we 
simply use the well known addition formula for 
the tangent function. Since a  + b  and c  have a 
sum of 90° their tangents are reciprocals of one 
another: 

 
tan

tan

1
a b

c
+ =^ h

But we also have:

 –
tan

tan tan

tan tan

1
a b

a b
a b

+ =
+

^ h

 – tan tan

tan tan

tan1

1
`

a b
a b

c

+
=

Fig 1: The figure as it looks when \B is acute, and when it is obtuse
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Cross-multiplying and transposing terms, 
we get (1).

•	 If s is the semi-perimeter of a triangle, and r is 
the radius of its incircle, then its area ∆ is given 
by ∆ = rs. The proof is given in Figure 2; it is 
almost a proof without words! 

Now we move to Figure 3 which is the same as 
Figure 2 but with some extra labels. The two 
lengths marked x are equal (“The tangents from 
a point outside a circle to the circle have equal 
length”), as are the two lengths marked y, and the 
two lengths marked z; and also the two angles 
marked a , the two angles marked b , and the two 
angles marked c .

Consider the angles marked , ,a b c :

a  = \FAI = \EAI,

b  = \DBI = \FBI,

c  = \DCI = \ECI.

Since a  + b  + c  = 90°, by (1) we have:

tana  tanb  + tanb  tanc  + tanc  tana  = 1.

But from Figure 3,

tan a  = x
r ,    tan b  = y

r ,     tan c  = z
r .

Therefore we get, by substitution,

(2) , .xy
r

yz
r

zx
r

xyz
r x y z

1 1

2 2 2 2

`+ + =
+ +

=
^ h

Now x + y + z = s (the semi-perimeter); and since
y + z = a, we have x = s – a. In the same way,  y = 
s – b and z = s – c. So result (2) may be rewritten as:

 
,s a s b s c

r s
1

– – –

2

=^ ^ ^h h h

 
. ., 1.i e s s a s b s c

r s
– – –

2 2

=^ ^ ^h h h

Since rs = ∆ this yields:

 ∆2 = s (s – a)(s – b)(s – c),

and we have obtained Heron's formula.

Fig 2: Proof of the area formula ∆ = rs

Fig 3
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Who was Heron? 
Heron lived in the first century AD, in the Roman town of Alexandria of ancient Egypt. He was a remark-
ably inventive person, and is credited with inventing (among other things) a wind powered machine and 
a coin operated vending machine — perhaps the first ever of its kind!  For more information please see 
reference (2).
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pages 290–292
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Clues Down
1: 20A reduced by 2 and then multiplied by 2
2: The largest two digit number
4: Four times the first two digits of  1A
5: 20D times 10 plus 9D
6: Hypotenuse of right angle triangle with sides 8 and 15
7: 1A minus 25
9: 26D plus 10
11: First two digits are double of last two digits in reverse
12: 11D plus 18A minus 3230

14: The middle digit is the product of the first and the last 
digit

15: 27A times 5 then add 4
19: Two times 29A plus 26D in reverse
20:  Largest two digit perfect square
21: Half of 22A written in reverse
23: 29A plus half a century
24: Difference between last 2 digits & first 2 digits of 16A
26: Four squared times two
27: A prime number

Clues Across
1: 29A minus first two digits of 14A
3: 16A minus 102
6: One less than sum of internal angles of a triangle
8: Three consecutive digits in reverse order
10: Sum of the digits of 14A reversed
11: Even numbers in a sequence
13: A number usually associated with r
14: The product of 29A and 25A
16: Sum of internal angles of an Octagon
17: The product of 6D and 28A
18: Palindrome with 4,3
20: The product of 27D and 8
22: 2 to the power of the sum of the digits of 6D
23: 5 more than 13A
25: Consecutive digits
27: 6D reduced by 1 and then multiplied by 10
28: Sum of two angles of an equilateral triangle
29: A perfect cube

1
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3 4 52

by D.D. Karopady
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One of the fundamental concepts in statistics is that of 
probability. It forms an integral part of most mathematics 
curricula at high school level. The topic of probability can 
be enlivened using many interesting problems. The related 
experiments are, however, time consuming and impractical 
to conduct in the classroom. Simulation can be an effective 
tool for modeling such experiments. It enables students to 
use random number generators to generate and explore 
data meaningfully and, as a result, grasp important proba-
bility concepts. This section discusses a well known problem 
known as the Birthday Problem or the Birthday Paradox 
which highlights an interesting paradox in probability and 
lends itself to investigation. Its exploration using a spread-
sheet such as MS Excel can lead to an engaging classroom 
activity. It highlights the fact that spreadsheets can enable 
students to visualize, explore and discover important con-
cepts without necessarily getting into the rigor of math-
ematical derivations. 

Probability taught visually

The Birthday 
Paradox
Simulating using MS Excel 

Jonaki Ghosh
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Exploring the Birthday Paradox
The birthday problem, more popularly referred to 
as the birthday paradox, asks the following:

How many people do you need in a group to ensure 
that there are at least two people who share the 
same birthday (birth date and month)?

The immediate response from most students is 
366 (which is true). However we find some sur-
prises here. It can be shown that in a group size 
of 50 we can be almost certain to find a birthday 
match (often there is more than one match), and 
in group sizes of 24, the chance of finding a match 
is around half. The argument for this can lead to 
an interesting classroom discussion where basic 
concepts of probability play an important role. 

It can be an interesting, although tedious, exercise 
to actually verify the claim empirically by random-
ly collecting birthdays, randomly dividing them 
into groups of 50 and checking if each group has a 
match. Another way of conducting the experiment 
is to ask each student to contribute 10 birthdays of 
persons known to her (relatives or friends), write 
them on slips of paper, fold them and put them in 
a box. After shaking the box, each student is asked 
to select a slip from the box and report the date 
which is then marked off on a calendar. The box 
is circulated till a date is repeated and number of 
dates that were marked before finding the match 
is noted. After performing this experiment several 
times the average number of dates required to 

find a match is calculated. Suppose 10 sets of 24 
slips each are created from the contents of the 
same box, then students can verify that almost 
invariably 5 of the 10 sets will contain a match 
while the other 5 will not have a match. This helps 
to convince them that the probability of a match 
among 24 randomly selected persons is around 
half. While the exercise is exciting it can be very 
time consuming. 

Simulation of the Birthday Problem 
on Excel
Simulating the problem on Excel, on the other 
hand, makes it far more convenient to do the ex-
periment. 50 birthdays can be randomly generated 
using the RAND( ) and INT( ) functions. 

Step 1: The first step is to randomly generate 50 
integers between 1 and 12 (inclusive) in column A 
to indicate the months. This may be achieved in the 
following manner.
• Click on cell A2 and enter 1. Then enter 

=  A2 + 1 in cell A3 and drag cell A3 till A51. 
This will create a column of numbers 1 to 50 
as shown in Figure 1.

• To generate 50 integers between 1 and 12 
(inclusive) for indicating the months we enter 
= INT  (12 * RAND( ) + 1) in cell B2. A double 
click on the corner of cell B2 will fill the cells 
B2 to B51 with 50 randomly generated inte-
gers between 1 and 12. These represent the 
months of 50 birthdays (as shown in Figure 1).

Figure 1: Simulation of birthdays in Excel
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Figure 1: Simulation of birthdays in Excel
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Step 2: The next step is to generate 50 random 
integers between 1 and 31 (inclusive) to indicate 
the day of the month. This is obtained as follows
1. Enter =INT(31*RAND( )+1) in cell C2 and 

double click on the corner of cell C2. 
2. 50 randomly generated integers between 1 

and 31 will appear in column C. These will 
represent days, corresponding to the months 
contained in column B. 

Step 3: The data in columns B and C represent 50 
randomly generated birthdays. For example a 3 
in cell B1 and 24 in cell C1 represent the date 24th 
March. We now need to browse through this list 
and search for a repeated date. This can be time 
consuming and inconvenient. In order to simplify 
this part of the process the dates may be converted 
to three or four digit numbers by entering the 
formula =100*B1+C1 in column D. Once this is 
done the first one or two digits of each number in 
column D will represent the month while the last 
two digits will represent the day. For example, the 
appearance of 225 in the list indicates 25th of Feb-
ruary while 1019 indicates 19th of October. The list 
of numbers can then be arranged in an ascending 
order using the sorting feature of the spreadsheet. 
This will ensure that a repeated date will appear as 
two successive values and thus be easily identified.

To convert the dates in columns B and C to three or 
four digit numbers we enter =100*B2+C2 in cell 

D3. Once again a double click on the corner of the 
cell D3 will reveal the 50 birthdays in cells D2 till 
D51 (see Figure 2).

Step 4: The list of dates appearing in column D 
needs to be sorted so that a birthday match can ap-
pear as two successive numbers and therefore be 
easily identified. To do this we select column D, go 
to Edit, select Copy, click on a column away from 
the data (for example choose a column from col-
umn F onwards), go to Edit, select Paste Special 
and click on values and then click on OK. This will 
ensure that all the numbers of column D will now 
be copied in the same sequence in the new column. 
Now click on the new column and select the sort 
(in ascending order) option from the toolbar. Once 
the dates are sorted a match can be easily identi-
fied as shown in Figure 2. 

The experiment may be run about 10 times to con-
firm that in each simulation of 50 birthdays (rep-
resenting the birthdays of 50 randomly selected 
people) there is at least one match. The pitfall of 
this simulation process is that impossible dates 
(such as 431, that is, 31st April etc) may appear in 
a particular list. In such a case the entire list can be 
ignored and the simulation may be repeated. 

It might be useful, however, to follow the simula-
tion exercise with an analysis of the problem using 
probability theory. Begin the discussion by finding 
the probability of a match in group sizes of three, 

Figure 2: Column D represents 50 randomly generated birthdays. The same list is 
sorted in column F which represents a match (in this case 203, that is, 3rd February)
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four and five. Once a pattern is evident, students 
can easily generalize it to find the formula for the 
probability of a match in a group size of n persons. 

The probability that in a group of three persons, all 
three have distinct birthdays is 

365

365

365

364

365

363

365

365 364 363
.3

=# #
# #

Thus the probability that at least two of them share 
a birthday is 

.1 –
365

365 364 363
3

# #

It needs to be emphasized here that in a group of 
three people there are three possible cases:
1. All three have distinct birthdays;
2. Two people have the same birthday while the 

third has a different birthday;
3. All three have the same birthday.

Since the three cases are mutually exclusive and 
exhaustive, the sum of their probabilities is 1. Thus 
the probability that at least two people have the 
same birthday includes cases (ii) and (iii) and can 
be obtained by subtracting the probability of (i) 
from 1.

The above expression can be extended to find 
the probability of at least one birthday match in a 
group of 4 persons, that is,

.1 –
365

365 364 363 362
4

# # #

Similarly, in a group of 5 persons the probability of 
a match is 

1 –
365

365 364 363 362 361
5

# # # #

Extending this it can be shown that the probability 
of a match in a group of size n is

1 –
365

365 364 ... 362 ( )n 1–
n =

# # # -^ h

1 –
365 ! 365

365 !

n– n
#^ h

The value of the above expression approaches 1, as 
n approaches 50. 

While generalizing the formula, students may need 
help in relating the last number of the product in 
the numerator to the group size, n. For example, 
the last number for n = 3 is 365 – 2 = 363, for n = 4 it 
is 365 – 3 = 362, for n = 5 it is 365 – 4 = 361; for n = k, 
it is 365 – (k – 1). Once the generalized expression is 
obtained the knowledge of factorials may be used 
to write the expression in a concise manner.

Conclusion
The topic of probability has a plethora of interest-
ing problems which can be made accessible to 
high school students through spreadsheets. The 
experiments related to these problems may be 
impractical to conduct manually but simulation 
can be an effective modeling tool for imitating 
such experiments. Microsoft Excel proves to be a 
very handy tool for conducting the explorations 
and investigations in the classroom. The Birthday 
problem discussed in this article can be conducted 
with students of grades 9 and 10 without getting 
into the mathematical derivations. However in 
grades 11 and 12 the spreadsheet verification of 
the problems can be followed by an analysis of the 
underlying concepts which are rooted in probabil-
ity theory.
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3

# #

It needs to be emphasized here that in a group of 
three people there are three possible cases:
1. All three have distinct birthdays;
2. Two people have the same birthday while the 

third has a different birthday;
3. All three have the same birthday.

Since the three cases are mutually exclusive and 
exhaustive, the sum of their probabilities is 1. Thus 
the probability that at least two people have the 
same birthday includes cases (ii) and (iii) and can 
be obtained by subtracting the probability of (i) 
from 1.

The above expression can be extended to find 
the probability of at least one birthday match in a 
group of 4 persons, that is,
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Similarly, in a group of 5 persons the probability of 
a match is 
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Extending this it can be shown that the probability 
of a match in a group of size n is

1 –
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The value of the above expression approaches 1, as 
n approaches 50. 

While generalizing the formula, students may need 
help in relating the last number of the product in 
the numerator to the group size, n. For example, 
the last number for n = 3 is 365 – 2 = 363, for n = 4 it 
is 365 – 3 = 362, for n = 5 it is 365 – 4 = 361; for n = k, 
it is 365 – (k – 1). Once the generalized expression is 
obtained the knowledge of factorials may be used 
to write the expression in a concise manner.

Conclusion
The topic of probability has a plethora of interest-
ing problems which can be made accessible to 
high school students through spreadsheets. The 
experiments related to these problems may be 
impractical to conduct manually but simulation 
can be an effective modeling tool for imitating 
such experiments. Microsoft Excel proves to be a 
very handy tool for conducting the explorations 
and investigations in the classroom. The Birthday 
problem discussed in this article can be conducted 
with students of grades 9 and 10 without getting 
into the mathematical derivations. However in 
grades 11 and 12 the spreadsheet verification of 
the problems can be followed by an analysis of the 
underlying concepts which are rooted in probabil-
ity theory.
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“What are the main goals of mathematics education in schools? 
Simply stated, there is one main goal — the mathematisation of 
the child’s thought processes. In the words of David Wheeler, it 
is ‘more useful to know how to mathematise than to know a lot 
of mathematics’.” (Goals of Mathematics Education Math, NCF 
2005)

A math portfolio is an excellent way to trace the mathematisa-
tion of a child’s thought processes. It is a collection of memora-
bilia that traces a student’s growing understanding of the sub-
ject and of herself as a student of the subject. The mathematics 
portfolio is one of the ways by which a teacher can encourage 
children “to learn to enjoy mathematics”, “to use abstractions 
to perceive relationships and structure”, to realize that “Math-
ematics (is) a part of children‘s life experience which they talk 
about” and “to engage every child in class” – all worthwhile 
outcomes mentioned in NCF 2005.

Student Learning and Progress 

How About A 
Math Portfolio?
Maintaining records of math work
A not-so-common method by which the student and teacher can trace how the 

student’s mathematical understanding develops. The article describes what a 

math portfolio is and how it can be used, what kind of mathematical skills it 

fosters, the kind of problems that can go into it and the logistical details of 

setting up this system.
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Wikipedia gives the literal meaning of a portfolio 
as “a case for carrying loose papers” and this defi-
nition works very well for a student math portfo-
lio. Look at the skills and attitudes developed by 
giving a student such a portfolio to maintain - ‘a 
case’: organization; ‘for carrying’: enthusiasm, at-
tachment to the subject; ‘loose papers’: spontane-
ity, ability to mathematise real life situations.

Running a math portfolio project is, however, not 
so much a play on words as thought given to the 
task assigned to the student. 

The math portfolio is intended to be a collec-
tion of the student’s work and her reflections 
on mathematics over a period of time. While 
some teachers have chosen to use the portfo-
lio to highlight the student’s best work, I feel 
that the portfolio is better used as a record of 
progress. The work put in the portfolio need 
not necessarily be all ‘correct’ or ‘perfect’ – 
rather, it is more like a work in progress giving 
insights (to both teacher and student) into the 
development of the student’s mathematical 
knowledge and problem solving skills. While it 
is maintained by the student, the teacher plays a 
major role in defining the student’s understand-
ing - both of the subject as well as of the level of 
engagement with it. Regular appraisal and review 
is therefore, an important part of the project. 

I have found that the math portfolio is a won-
derful way to acquaint myself with students at 
the beginning of a course and so the first task 
I usually set is an essay which encourages stu-
dents to share their experiences in mathemat-
ics and their attitude to it. One such essay was 
based on the 2001 movie ‘A Beautiful Mind’. 

I used the quote ‘There has to be a mathemati-
cal explanation for how bad that tie is’ and asked 
students “Do you agree with John Nash’s underly-
ing sentiment that mathematics is all pervasive? 
Describe some of your encounters with mathemat-
ics in unexpected situations.” When a homesick 
international student spoke of being in a minority 
and how his emotions were related to numbers, 
I knew that the math portfolio had done what 
no counselor could do – get an adolescent boy to 
speak about his feelings!

Nothing encourages a student like success; 
therefore, in the initial stages, it is better to start 
with problems that the students find interesting 
and easy. Consequently, it is important to ensure 
that the problems are open to interpretation and 
exercise several skills and competencies. For 
example, a well-known problem states: “A person 
starts from home at 6.00 a.m. and reaches her 
destination after a journey in which she made sev-
eral stops and travelled at varying speeds. If she 
stays at her destination overnight and starts the 
return along the very same route at the same time 
(i.e. 6.00 a.m.) the next morning, would she at any 
point on the return journey be at exactly the same 
spot at the same time as the previous day?”

I have posed this question to several groups of 
students and have always been struck by the 
diverse ways in which students attempt to under-
stand and solve this problem. One student – who 
incidentally, has a learning disability – stunned me 
by restating the problem so as to have two people 
starting at the same time from both ends of the 
journey; the question, she said, thereby became: 
will they meet at any point? The more visual 
thinkers tried to solve the problem using a graph. 
And those of my students with a more theoretical 
bent of mind attempted a formal mathematical 
solution using continuous functions. I found that, 
in attempting this question, students are engag-
ing with a mathematical question that exercises 
several skills, including that of making a logical 
mathematical argument. It can be attempted by 
students who process data in different ways and 
it is not so difficult that students get discouraged 
by its complexity. It can be used by the teacher 
to set the stage for teaching a variety of topics 

Arrange the logistical details

• Where will the portfolios be stored?

• Can the students take the work home?

• Are there any restrictions on quality of 
printing/publishing? 

• Are e-portfolios an option?
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from plotting graphs to using numerical methods 
to solve equations. More importantly, using this 
problem as a portfolio problem gives students 
time to mull over the problem and the freedom to 
interpret and solve it by the method that makes 
most sense to them. Instead of mining a rich diver-
sity of thoughtful solutions from students who are 
set this as a portfolio problem, such problems are 
often set as classroom exercises where they suffer 
from the ‘fastest hand first’ method of solution.

Cryptarithms (see Fun Problems in this issue) are 
perfectly suited to be portfolio problems, being 
appropriate for students who know basic multipli-
cation, some divisibility rules and who are inter-
ested in exercising systematic logical reasoning. 
The teacher may even provide some scaffolding 
to the student in order to begin the solution. This 
may seem like giving away the solution, but as the 
explorations in a portfolio can be completely in-
dividualized, this should present no difficulty; the 
teacher can decide, based on her own understand-
ing of the children, the degree of scaffolding which 
is appropriate for each individual child. Provid-
ing such support will make it a more meaningful 
exercise for students who simply say that they are 
‘bad at doing this kind of problem’; it may shed 
some light on how to start the problem and solve 
something that they thought they could not.

That being said, the point of the portfolio is that 
students move from the ‘exercise paradigm’ to 
‘landscapes of investigation’. The next problem is 
from a Japanese source and is reproduced in the 
book on “The Open-Ended Approach” by Jerry P. 
Becker & Shigeru Shimada. It was part of a pre-
sentation on open-ended questions at the NCTM 
Annual Meeting. 

A transparent flask in the shape of a right rectan-
gular prism is partially filled with water. When the 
flask is placed on a table and tilted, with one edge 
of its base being fixed, geometric shapes of vari-
ous sizes are formed by the cuboid’s faces and the 
surface of the water. The shapes and sizes may vary 
according to the degree of tilt or inclination. Try to 
discover as many shapes and sizes as possible and 
classify these shapes according to their properties. 
Write down all your findings. 

The link http://mste.illinois.edu/users/aki/
open_ended/flask_problem.html includes an 
interactivity which allows students to understand 
and visualize the problem before attempting the 
solution. Here, it is important that the teacher 
clearly states his expectations from the student. So 
it will be necessary to elaborate on the problem 
(which only asks for a classification based on the 
observed properties of the shapes). The teacher 
will first want the student to develop the skills of 
observation and abstraction and should therefore 
ask for diagrams. Then, the teacher will want the 
student to exercise recall of concepts taught in 
geometry and he should therefore ask that the 
diagrams be classified according to shape. After 
this, there should be a process by which a student 
can recognize the flow from one shape to another 
and the teacher could ask for a short paragraph 
describing the process. Since the dimensions of 
the flask are given in the link, there can be ques-
tions on the sizes of the shapes too.

In the words of Young (1992), the communication 
pattern in a traditional mathematics classroom 
is “Guess What the Teacher Thinks”. This pattern 
tends to classify answers as ‘right’ or ‘wrong’ in 
absolute terms and consists of trying to avoid 
making mistakes and moving towards a predeter-
mined outcome. Unfortunately, this means that the 
huge learning opportunities afforded by mistakes 
are not exploited by teachers or students. Neither 
can the student stumble upon discoveries that, on 
investigation, provide fresh insight into familiar 
concepts. 

For example, in the activity suggested by Figure 
1, the teacher should expect a thoughtful essay 
backed by calculations on whether the student 
would go for such a deal on not. For example, 
whether spending `5000 in a single month on 
clothes would sit well in the family budget (use of 
a pi chart). Whether 36 clothes bought at an aver-
age price of `138/- (calculation and concept of av-
erage) would ensure quality. Drawing up several 
deals (can this deal include a most desirable pair 
of jeans, if so what would the remaining 35 clothes 
be like, would you end up spending `5000 for that 
pair of jeans plus 35 useless clothes) and so on. 
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Skills Tested
1. Understanding of mathematics concepts used. 
2. Fluency in the language of mathematics.
3. Ability to

i. Perform correct calculations.
ii. Understand and evaluate answers ob-

tained in order to take decisions
iii. Use charts to communicate 
iv. Place this problem in the larger context 

of a monthly budget and evaluate its 
significance. 

v. Draw a logical conclusion based on 
calculations made. 

As students gain a certain level of comfort with 
the portfolio project, the problems can increase 
in complexity and cross traditional boundaries 
between geometry, algebra, arithmetic and so on. 
It is useful for the teacher to have a collection of 
problems at different levels. Students could even 
be told that the portfolio must consist of ‘at least 
one problem’ from each level.

 

Along with the content, an assessment rubric that 
has both a problem specific as well as a general 
component needs to be created by the teacher. 
The former would assess logical reasoning and 
accuracy without stressing on a particular method. 
The general component on the other hand, would 
record and give credit to innovative problem 
solving, conjecture and structured investigation as 
well as clarity of presentation. Of course, students 
would need some benchmarks to guide them in 
this direction.

It is important to understand that student specific 
and not uniform standards of excellence should 
be the goal here. A component of self-assessment 

PPA Y

H

FAMILY

BYE BYE
Big shopping bills

36 garments for `4900 only

 A possible portfolio problem based on this is: 

 Will you be saying “Bye Bye to Big shopping 
bills” if you go in for this deal?

 Do you agree with the statement in this 
advertisement? 

    
Present your argument in a short essay, showing 
all the calculations you would base your reasoning 
on.  Remember that there is no ‘right’ or ‘wrong’ 
decision, your argument should be based on your 
family’s current monthly spend on clothes and on 
quantity vs. quality

Fig, 1 shows an advertisement in a bus that I travelled 
in recently.
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can also elicit student understanding of the lack of 
a particular skill and the teacher and student can 
assess whether there is improvement in that skill 
as more problems are added to the portfolio. 

Much has been written about math portfolios but 
how practical is it for students who are studying 
the Indian curriculum to maintain portfolios? It 
may not be feasible for a student to spend more 
than an hour and a half a week on the portfolio. 
Since this time also must include components of 
work, presentation and reflection, it may not be 
practical to issue more than 4 portfolio problems 
a term. While many students and even parents 
may complain about additional work, particularly 
in the senior classes, the freedom as well as the 
responsibility of maintaining a portfolio has long 
term benefits on the student’s independent study 
skills, problem solving skills, interest in the subject 
and knowledge of mathematics that may not be 
curtailed by the syllabus. 

Set up the
System

1. Portfolio calendar- dates/days on which 
problems are published, submission dates, 
etc.

2. Are the portfolios going to be shared with 
other students/parents, etc. If so, when?

3. How is this portfolio going to feed into the 
overall assessment along with tests, class 
quizzes, lab activities?

4. Will students be encouraged to create 
problems? If so, what are the guidelines to 
be given?

5. Will there be an end-of-portfolio activ-
ity- such as a summarizing of learning, a 
selection of ‘good’ problems or solutions 
and so on?
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Pythagoras’ theorem is one of the most popular theorems 
in geometry. Reams of paper have been used to write dif-
ferent proofs of this theorem but in this article we cut and 

fold paper to demonstrate two different proofs. 

Make a boat and prove Pythagoras' theorem
Remember how children float paper boats in running water af-
ter heavy rain? There are many types of boats that can be made 
by folding a single paper sheet. Here, we make the simplest and 
most common type of paper boat using a square sheet of paper. 
In case you have forgotten how to fold a boat here are the steps:-

Visual Connect in Teaching 

Paper Folding 
And The Theorem 
of Pythagoras 
Can unfolding a paper boat reveal a proof of Pythagoras’ theorem? 

Does making a square within a square be anything more than an exercise in 

geometry at best? Art and math come together in delightful mathematical 

exercises described in this article.
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After step 8 you will have a boat. What is its shape? If you look closely you find creases which show many 
right angled triangles.

Now unfold the boat. Remember we started with a plain square paper. Now look at the creases appear-
ing in the unfolded boat. You will see a pattern which is known mathematically as a tessellation (“making 
tiles”). This particular tessellation consists of squares with creases along the diagonals which divide each 
square into two right angled triangles. The way we folded the paper ensures that all the squares (and 
therefore the triangles too) are identical in all respects.

Step 1

Step 3

Step 6 Step 7

Pull Pull

Step 8 

Step 4

Fold back one layer on one side 
and three layers on the other

Step 5

Step 2

BOAT

Pull out to make a square again
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They look like this: 

Choose any right angled triangle ABC. Here angle B is 
a right angle. Shade the squares on sides AC, BC and 
AC. Look closely at these squares. All have creases 
along the diagonals and are divided into right-angled 
triangles. How do we measure their areas? Area need 
not only be measured in terms of unit squares. We can 
also measure the area by counting the number of 
identical right angled triangles contained in them.

The square upon AB has 2 right-angled triangles;
so AB 2 = 2 right-angled triangles.

The square upon BC  has 2 right-angled triangles;
so BC 2 = 2 right-angled triangles.

The square upon AC has 4 right angled triangles;
so AC 2 = 4 right-angled triangles.

Hence: AC 2 = AB 2 + BC 2  This is the theorem of Pythagoras applied to triangle ABC.

Make a square within a square and prove Pythagoras’ Theorem
Take a square sheet of paper. Fold along a diagonal and make a sharp crease (Fig. 1).

Fold the bottom right corner towards the diagonal, so that the edge of the sheet lies parallel to the 
diagonal. Make a crease. You will have folded a right angled triangle (Fig. 2).

Fig 1 Fig 2
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Now fold the next side of the square to the side of the right angle already folded (Fig. 3)and make a crease. 
Repeat the same with the remaining two corners.(fig. 4 and fig. 5)

Now you have a square with a square hole in the middle. (Fig. 5). Crease all the sides and unfold(Fig.6). 
Let AP = a,  AQ = b and PQ = c. In triangle APQ, angle PAQ is a right angle. PQRS is a square with side PQ = c.
Hence area of PQRS = c2.

Fig 3 Fig 4

A b Q B

R

CSD

P

a c

Fig 5 Fig 6
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Hence: PQ 2 = AP 2 + AQ 2. This is the theorem of Pythagoras applied to triangle APQ.

Fold back triangles PAQ, BQR, RCS, SDP inside, as 
before.

Now in the square PQRS standing on PQ we have 
identical triangles PAQ, BQR, RCS, SDP, and a small 
square ABCD.

Square PQRS = Triangle PAQ + Triangle QBR +
Triangle RCS + Triangle SDP + Square ABCD

= 
2

1 ab + 
2

1 ab + 
2

1 ab + 
2

1 ab + square ABCD

= 4 × 
2

1 ab + AB 2

= 2ab + (b – a)2.

Hence c 2 = 2ab + b2 + a2 – 2ab

and so c2 = a2 + b2.

Q

c

c

c

b

bb

b

a

a

a

a
A

B

C

D

c R

S

P

SiVASANkARA SASTRy’S interests range from origami, kirigami, paleography and amateur 
astronomy to clay modelling, sketching and  bonsai. He is also a published author having 
written 27 books in kannada on science and mathematics. Mr. Sastry may be contacted a 
vsssastry@gmail.com
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Classification of Quadrilaterals

The Four-Gon 
Family Tree
A Diagonal Connect
Classification is traditionally defined as the precinct of biologists. But classifi-

cation has great pedagogical implications — based as it is on the properties 

of the objects being classified. A look at a familiar class of polygons — the 

quadrilaterals — and how they can be reorganized in a different way.  

A Ramachandran

Quadrilaterals have traditionally been classified on the 
basis of their sides (being equal, perpendicular, paral-
lel, …) or angles (being equal, supplementary, …). Here 

we present a classification based on certain properties of their 
diagonals. In this approach, certain  connections among the 
various classes become obvious, and some types of quadrilat-
erals stand out in a new light.

Three parameters have been identified as determining various 
classes of quadrilaterals: 
1. Equality or non-equality of the diagonals
2. Perpendicularity or non-perpendicularity of the diagonals
3. Manner of intersection of the diagonals. Here four situa-

tions are possible: 
a. The diagonals bisect each other.
b. Only one diagonal is bisected by the other.
c. Neither diagonal is bisected by the other one, but both 

are divided in the same ratio.
d. Neither diagonal is bisected by the other one, and they 

divide each other in different ratios. 
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These parameters allow us to identify 16 classes of quadrilaterals as listed in Table 1. The meaning of 
the phrase ‘slant kite’ though not in common parlance should be clear.

Certain relations among these classes are obvious. Members of columns 2 and 3 are obtained from the 
corresponding members of column 4 by imposing equality and perpendicularity of diagonals, respec-
tively, while members of column 1 are obtained by imposing both of these conditions.

Sequentially joining the midpoints of the sides of any member of column 1 yields a square, of column 2 
yields a general rhombus, column 3 a general rectangle, and column 4 a general parallelogram.

Table 2 gives the cyclic/non-cyclic nature and number of reflection symmetry axes of each type. An 
interesting pattern is seen in both cases.

Quadrilaterals with equal diagonals divided in the same ratio (including the ratio 1:1) are necessarily cy-
clic, as the products of the segments formed by mutual intersection would be equal. Quadrilaterals with 
unequal diagonals divided in the same ratio and those with equal diagonals divided in unequal ratios are 
necessarily non-cyclic, as the segment products would be unequal. Quadrilaterals with unequal diago-
nals divided in different ratios could be of either type.

The quadrilateral with the maximum symmetry lies at top left, while the one with least symmetry lies at 
bottom right. A gradation in symmetry properties is seen between these extremes.

Table 1. Quadrilateral classes based on properties of the diagonals

Diagonals equal Diagonals unequal

Perpendicular Not-perpendicular Perpendicular Not-perpendicular

Both diagonals 
bisected

Square General rectangle General rhombus General parallelo-
gram

Diagonals divided 
in same ratio (not 
1:1)

Isosceles trapezium 
with perp diagonals

Isosceles trapezium General trapezium 
with perp diagonals

General trapezium

Only one diagonal 
bisected

Kite with equal di-
agonals

Slant kite with equal 
diagonals

Kite Slant kite

Diagonals divided 
in different ratios, 
neither bisected

General quadrilateral 
with equal and perp 
diagonals

General quadri-
lateral with equal 
diagonals

General quadrilateral 
with perp diagonals

General quadrilat-
eral

Diagonals equal Diagonals unequal

Perpendicular Not-perpendicular Perpendicular Not-perpendicular

Both diagonals 
bisected

Cyclic (4) Cyclic (2) Non-cyclic (2) Non-cyclic (0)

Diagonals divided 
in same ratio (not 
1:1)

Cyclic (1) Cyclic (1) Non-cyclic (0) Non-cyclic (0)

Only one diagonal 
bisected

Non-cyclic (1) Non-cyclic (0) Either (1) Either (0)

Diagonals divided 
in different ratios, 
neither bisected

Non-cyclic (0) Non-cyclic (0) Either (1) Either (0)

Table 2. Cyclic/non-cyclic nature of quadrilateral & the number of reflection symmetry axes (shown in parentheses)
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The present scheme also suggests a common formula for the areas of these figures. The area of any 
member of column 4 can be obtained from the formula A = 

2

1 d1d2 sin Θ where d1, d2 are the diagonal 
lengths and Θ the angle between the diagonals. The formula simplifies to A = 

2

1 d1d2 for column 3, A = 
2

1 d2 

sin Θ for column 2, and A = 2

1 d2 for column 1.

The general area formula A = 
2

1 d1d2 sin Θ is applicable in the case of certain other special classes of quad-
rilaterals too.

Non-convex or re-entrant quadrilaterals are those for which one of the (non-intersecting) diagonals lies 
outside the figure. the applicability of the formula to these is demonstrated in Figure 1. The computation 
shows that 

 [ABCD] = [3ABC ] + [3ADC ] = [3ABE ] − [3CBE ] + [3ADE ] − [3CDE ]

  = 
2

1 sin Θ (AE · BE – CE · BE + AE · DE – CE · DE )

  = 
2

1 sin Θ (AC · BE + AC · DE ) = 
2

1 sin Θ (AC · BD )

Reflex quadrilaterals with self-intersecting perimeters such as the ones shown in Figure 2 can be consid-
ered to have both the (non-intersecting) diagonals lying outside the figure. The applicability of the area 
formula to such figures is demonstrated in Figure 3. Here the area of the figure is the difference of the 
areas of the triangles seen, since in traversing the circuit ABCDA we go around the triangles in opposite 
senses. Hence in Figure 3, 

Fig. 1 Square brackets denote area: [3ABC] denotes area of 3ABC, etc

Fig. 2 Reflex quadrilateral: AC and BD are diagonals lying outside the reflex quadrilateral ABCDA, 
whose perimeter is self-intersecting
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 [ABCDA] = [3ABE] − [3CDE] = [3ABD] − [3CBD]

  = 
2

1 BD · h1 − 
2

1 BD · h2 = 
2

1 BD · (h1 − h2)

  = 
2

1 BD · (AF sin Θ − CF sin Θ) = 
2

1 BD  sin Θ · (AF − CF )

  = 
2

1 BD · AC  sin Θ.

In the particular case when AC || BD, the formula implies that the area is 0. This makes sense, because, 
referring to Figure 2(b), the area of quadrilateral ABCDA is: 

 [ABCDA] = [3ABE] − [3CDE]

  = ([3ABE] + [3EBD]) − ([3CDE] − [3EBD])

  = [3ABD] − [3CBD] = 0.

If one or both the diagonals just touches the other one, the figure degenerates to a triangle, and the formula 
reverts to the area formula for a triangle, A = 2

1 ab sin C (see Figure 4). The formula   2

1 AC · BD  sin Θ continues 
to remain valid.

To conclude, the above scheme integrates the various quadrilateral types normally encountered in classroom 
situations and highlights a few others. It suggests new definitions such as: A trapezium is a figure whose diago-

Fig. 3 

Fig. 4 Two examples of a degenerate quadrilateral ABCD; in (a) vertex B lies on diagonal AC,  
and in (b) vertices B and C coincide
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nals intersect each other in the same ratio. Non-convex and reflex quadrilaterals are also brought in as varia-
tions on the diagonal theme. The formula A = 2

1 d1d2  sin Θ is also shown to be the most generally applicable 
formula for quadrilaterals.

A RAmAchAndRAn has had a long standing interest in the teaching of mathematics and science. He 
studied physical science and mathematics at the undergraduate level, and shifted to life science 
at the postgraduate level. He has been teaching science, mathematics and geography to middle 
school students at Rishi Valley School for two decades. His other interests include the English lan-
guage and Indian music. He may be contacted at ramachandran@rishivalley.org.

Having taught for many years one would think 
that one cannot be surprised by student respons-
es anymore; one has seen it all! But I discovered 
that this is not so. I give below an instance of a 
student’s out-of-the-box thinking. During a class 
the question posed was: The sum of a two digit 
number and the number obtained by reversing 
the order of the digits is 121. Find the number, if 
the digits differ by 3.

After some explaining, I wrote this pair of equa-

tions on the board: (10x + y) + (10y +x) =121, 

x – y=3. Further processing gave: y=7, x=4. 
Therefore the answer to the question is 47.

Sheehan, a student of the class who likes to think 
independently, worked out this problem differ-
ently. I reproduce below a copy of his working.

He had worked out all the possibilities for this 
occurrence. They are not many, of course. When I 
went around looking into their work, I was taken 
aback by this approach. Later I tried to impress 
upon him the necessity of solving problems the 
‘normal’ way. The ‘board’ wanted things done in 
a particular way. But I must say that it was I who 
was impressed.

The confidence of these students is high. They 
are willing to tackle most problems without 
knowing the ‘correct’ way to a solution. A posi-
tive trait surely. But on the negative side, these 
students often block out new learning. They 
sometimes refuse to learn a method as they 
perhaps feel secure about their own capacity to 
tackle problems.

A new approach to

solving equations? by Shibnath Chakravorty

– Alfred North Whitehead (1861-1947)

“Algebra reverses the relative importance of the 
factors in ordinary language”

Courtesy: Sheehan Sista, Grade 9, Mallya Aditi International School
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Convenor : 
The Club should have a teacher convenor. The 
convenor could change after one term or one 
year.

Weekly meeting : 
The Club should meet once a fortnight (or once 
a week if there is enough interest), for 1 to 
1½ hours. The time slot should be chosen so 
that it does not get cut into by other activities.

Presentations : 
Presentations can be made at the meetings. 
These could be of short duration (20–30 min-
utes); maybe one presentation per meeting, 
made by either a teacher or a student. The rest 
of the time can be spent in problem solving, 
done in small groups, collaboratively. Or it can 

be spent making some artefacts, using paper, 
wood or straw.

Bulletin board : 
Maintain a bulletin board. It can be of a modest 
size, but its contents should be updated regu-
larly. Do not start too ambitiously and then allow 
the club to decay.
The bulletin board should feature a problem 
corner and also a math news corner (with news 
from the math world).
The problem corner should have separate sec-
tions for senior and junior students. Having a 
single mixed problem set could lead to negative 
consequences.
Do not set problems which are ‘straight from 
the textbook’. The problems should be mildly 
challenging. Try to set non-routine problems.

It is important to have a Math Club in one’s school. It offers a forum to bring together students 
and teachers who share a love for mathematics.

Let it be emphasized right from the start that a Math Club is not meant only for gifted students. 
Nor is it a forum for coaching students for math competitions. Rather, it is a forum for ‘doing’ and 
exploring mathematics, in an atmosphere of freedom and sharing. As such it should be open to any-
one who has an interest in the subject and wishes to see math ideas in action, learn about mathema-
ticians, hear about new areas of application, and so on.

In the same way, the Club should not be restricted only to mathematics teachers. Indeed, it would 
be good if the convenor of the club goes out of the way to persuade interested colleagues to join the 
club.

We list here some ideas for running such a Club.
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Note : This will be an ongoing column in this magazine, and teachers are invited to write to us and 
share their ideas. We will discuss a few ideas in some detail in each issue. Once our web portal is set 
up, some of these discussions will be continued online.

Ideas for problems : 
•	 Cryptarithms
•	 Coin weighing problems
•	 Logic puzzles
•	 Problems on divisibility and numbers
•	 Problems on triangle and circle geometry

Ideas for presentation : 
•	 Paper folding
•	 Lives of mathematicians: Ramanujan, New-

ton, Gauss, Euler, Riemann, Pascal, ... 
•	 Ancient Indian mathematics – work of 

individuals like Aryabhata, Brahmagupta, 

Bhaskara I, Bhaskara II (Lilavati)
•	 Mathematics behind cryptography
•	 Mathematics behind GPS
•	 Mathematics behind a CT scan
•	 Mathematics of astronomy
•	 The story behind Fermat’s Last Theorem
•	 Pythagorean triples and their properties
•	 Fibonacci numbers and their properties
•	 Prime numbers, perfect numbers, amicable 

numbers
•	 Ideas	of	infinity
•	 Use of math software

Sample resource :
Wolfram Math World,  http://mathworld.wolfram.com/

Plus Online Magazine,  http://plus.maths.org/content
NRICH, http://nrich.maths.org/public/



They say that each number has its own special property, unique and 
peculiar to it. It is not always easy to find such a property; but some-
times, by luck, or by hard work, one stumbles upon it.

Mathematicians such as John E Littlewood and Godfrey 
H Hardy who worked closely with the great mathematician 
Srinivasa Ramanujan (1887–1920) would say of him that he 
seemed to know the positive integers as friends. He would know 
the individual peculiarities of each number! 

Here is a well known property that Ramanujan noted about the number 1729: 
he said to Hardy one day: 

“It is the smallest positive integer that can be written as the sum of 
two positive cubes in more than one way“. 

‘Cubes’ are numbers like 1, 8, 27, 64, 125, 216,…. Ramanujan obviously had in mind the following 
identity: 1729 = 103 + 93 = 123 + 13.

The identity is easy to check. But how could he know that 1729 is the smallest positive integer that 
can be written in two such ways?  Only if he had looked at lots and lots of integers before that ….

Ramanujan is said to have made this observation to Hardy who happened to be visiting him while 
he was recovering in a sanatorium in England, in the year 1918; on entering Ramanujan’s room, 
Hardy apparently said (perhaps just to start a conversation), “I came in a taxi whose number was 
1729. I could not see anything interesting about that number” — thereby inviting the response 
quoted above.1

We shall call a number with such a property a Ramanujan number. Thus, 1729 is the least Ra-
manujan number.

Here is our challenge to you: Find the next Ramanujan number after 1729.

Probably you will need to use a computer to make a systematic search for such numbers. 

And some extensions …
1. Which is the smallest positive integer that can be written as the sum of two squares in more 

than one way? 

2. Which is the smallest positive integer that can be written as the sum of two triangular numbers 
in more than one way?  (The ‘triangular numbers’ are the numbers 1, 1+2, 1+2+3, 1+2+3+4, 
...; i.e., the numbers 1, 3, 6, 10, 15, 21, ...)

3. Which is the smallest positive integer that can be written as the sum of two fourth powers in 
more than one way?  (You will certainly need to use a computer to solve this.) 

We will discuss the answers in the next issue, and at the same time make some general com-
ments about such problems.

Ramanujan’s
Number by 

1 Editor’s note: Ramanujan had gone to England four years earlier, in 1914, at the invitation and insistence of 
Hardy. We shall have more to say about Ramanujan in future issues of this magazine.
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To talk about a book on mathematics as ‘entertaining’ or 
a ‘page-turner’ may look out of place; but that is exactly 
how one would describe Simon Singh’s book, Fermat’s 

Enigma. The book starts in a dramatic manner: “This was the 
most important mathematics lecture of the century”. Singh is 
writing about a lecture to be delivered by Andrew Wiles on 23 
June, 1993; he was going to sketch a proof of Fermat’s last theo-
rem in this lecture. It was known as the ‘last’ theorem because 
it was the only remaining ‘theorem’ stated by the 17th century 
mathematician Pierre de Fermat which had neither been proved 
nor disproved, despite close attention given to it over the course 
of three and a half centuries by some of the greatest mathemati-
cians. (Technically it ought to have been called a ‘conjecture’ 
as no proof had been found as yet). One can imagine an atmo-
sphere of tension and excitement in the lecture hall at the pros-
pect of the theorem finally being proved. 

Book Review: 
Three centuries of brain racking discovery

xn+yn=zn ?
Fermat’s Enigma – The Epic Quest to Solve 
The World's Greatest Mathematical Problem
by Simon Singh
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What Singh manages to do in the book is weave a 
story with several strands into a colourful tapestry. 
The story navigates between biographical, histori-
cal and mathematical topics in a fluid and intrigu-
ing manner. It captures the spirit that drives and 
inspires mathematicians to take on intellectual 
challenges. The protagonist is Andrew Wiles, who 
as a ten year old dreamed of solving one of the 
most enduring problems of mathematics – that of 
finding a proof of Fermat’s last theorem, or FLT as 
it is called – and ultimately went on to solve it.

The FLT states that for the equation xn + yn = zn  
there are no solutions in positive integers when 
n is an integer greater than 2.

Singh starts by looking at the origins of the equa-
tion in ancient Greece in what we call the Theorem 
of Pythagoras.1 This is the case n = 2 of the equa-
tion, that is, x2 + y2 = z2. There is a short biogra-
phy of Pythagoras, describing how he starts the 
‘Pythagorean Brotherhood’ dedicated to discover-
ing the meaning and purpose of life. He believed 
that numbers held a special key to unlocking the 
secrets of the universe. The Brotherhood was 
fascinated by notions such as perfect numbers, 
i.e., numbers whose proper divisors add up to 
the number itself (for example, 6). Their world of 
numbers consisted of the counting numbers and 
rational numbers, which are ratios of counting 
numbers. They found a surprising number of con-
nections between these and nature, including the 
ratios responsible for harmony in music. However 
their strong belief in the importance of rational 
numbers proved to undermine further progress 
by the Brotherhood in the field of Mathematics. 
There is an apocryphal story where one of the 
disciples proved that 2 is irrational; the Broth-
erhood felt that this threatened their worldview, 
which was based on rational numbers, and sup-
posedly the disciple was put to death. However 
Pythagoras can be credited with laying the foun-
dation of modern mathematics by introducing the 
notion of proof: starting with a statement that is 
self evident (an axiom) and arriving at a conclu-
sion through a step-by-step logical argument. The 
theorem that goes by his name is true for all right 
angled triangles and it is not necessary to test it 
on all right angled triangles, as it rests on logic 

that cannot be refuted. (One of the few hundreds 
of proofs that exist is given in the appendix of the 
book). Teaching the Pythagorean Theorem by 
giving the historical back ground would surely 
broaden students’ horizons and deepen their 
interest in the topic.

Singh makes a detour at this point, making a dis-
tinction between mathematical proof and scientific 
proof. The demands made by mathematical proof 
are absolute; it has to be true for all cases whereas 
a scientific theory is only a model or an approxi-
mation to the truth. This is one reason why the 
Pythagorean Theorem remains accepted 2500 
years after it was first proved, while many scien-
tific theories have been supplanted over the years. 
These are ideas that a teacher can incorporate 
while teaching the theorem. Further along, differ-
ent types of proofs like proof by contradiction and 
proof by induction are explained in a lucid manner 
with examples given in the appendix, which an 
average 14 or 15 year old would easily be able to 
follow. 

Chapter 2 and 3 focuses on some prominent 
mathematicians who tried to tackle the problem, 
starting with Fermat, the person who posed the 
problem. Fermat was a civil servant – indeed, a 
judge – who devoted all his leisure time to the 
study of Mathematics. He was a very private man 
and hardly met any other mathematician; the only 
one with whom he collaborated with was Blaise 
Pascal, on formulating the laws of probability. 
With Father Marin Mersenne he would share his 
findings, and Mersenne in turn would pass on the 
news to other mathematicians. Fermat also had 
a hand in developing calculus; he was one of the 
first mathematicians to develop a way of finding 
tangents to curves. However, the reason he has 
become a household name is for his ‘last’ theorem, 
which he jotted in the margins of the Arithmetica, 
adding: “I have a truly marvelous demonstration of 
this proposition which this margin is too narrow to 
contain.” This statement spurred a large number 
of mathematicians to try and prove it, while others 
contested the claims.

Following this, the author gives a brief biography 
of Leonhard Euler, one of the greatest mathemati-
cians of the 18th Century. There is enough material 
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here that can be shared with students to give them 
a glimpse of Euler, and they will certainly enjoy 
tackling the problem of the Königsberg bridges. 
There is also a small diversion into the structure 
of numbers to introduce the idea of imaginary 
or complex numbers. Euler, who made the first 
breakthrough on the problem by giving a proof of 
the case when n = 3, had to make use of imaginary 
numbers. Teachers can test students’ understand-
ing of exponents by asking what other cases of 
the theorem have been proved once you prove it 
for n = 3. (The theorem in this case states that the 
equation x3 + y3 = z3 has no solutions in positive 
integers.)

The next mathematician to make a breakthrough 
on this problem was Sophie Germain. The author 
engagingly brings through the difficulties women 
had to undergo to establish themselves in this field, 
which was regarded as a domain for men only. The 
story of how her father tried to dissuade her from 
pursuing mathematics by taking away the candles 
will bring a tear to most. The determination with 
which she continued her studies including taking 
up an identity of a man will inspire girls; even now, 
mathematics tends to be thought of as a subject 
for boys. It will definitely help in puncturing some 
stereotypes that people hold.

The second part of the book focuses on the discov-
eries made in the 20th Century that finally helped in 

cracking the theorem. Though one may not un-
derstand the mathematics behind ‘modular forms’ 
or ‘elliptic curves’, Singh provides good analogies 
to help the reader keep up with the story without 
making any excessive technical demands. How two 
Japanese mathematicians linked the above two 
areas of mathematics with the Taniyama-Shimura 
conjecture which led to new approaches in tackling 
Fermat’s last theorem is described in a riveting 
manner, with a touching account of the tragedy 
that befell one of them. All along Singh keeps the 
story moving by giving details of Wiles’ career and 
his attempts at solving the problem, which finally 
culminates in his lecture in Cambridge in June 
1993. However, this is not the end of the story; at 
the beginning there had been a hint that there was 
more to come by saying “While a general mood of 
euphoria filled the Newton Institute, everybody re-
alised that the proof had to be rigorously checked 
by a team of independent referees. However, as 
Wiles enjoyed the moment, nobody could have 
predicted the controversy that would evolve in the 
months ahead.”

Simon Singh has managed to show that mathemati-
cians are people with a great passion to discover 
the highest truth, and he has certainly succeeded in 
portraying mathematics as a subject of beauty. The 
book will inspire teachers and students alike, and 
is recommended to all classes of readers.

Tanuj Shah teaches Mathematics in Rishi Valley School. He has a deep passion for making mathematics 
accessible and interesting for all and has developed hands-on self learning modules for the Junior School. 
Tanuj Shah did his teacher training at Nottingham University and taught in various Schools in England 
before joining Rishi Valley School. He may be contacted at tanuj@rishivalley.org

Reference
1 Editor's note: The article by J Shashidhar, elsewhere in this issue, gives more information on the history of the Pythagorean 
Theorem.
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The video starts slowly and 
clearly. Instructions are 
easy to follow because the 

demonstration backed by the 
excellent audio track is very stu-
dent friendly, though the paper 
folding happens rather fast. 

As the activity proceeded I 
noticed a visible increase in the 
pace of the narration. I man-
aged to keep up for a while, but 
towards the end my energies 
flagged, I gave up and had to 
press ‘pause’ till I figured out 
what was happening. 

And therein lay my learning 
opportunity! Stimulated by the 
excellent trigger afforded by the 
video, I stayed on task, decon-
structed the instructions and 
arrived at the proof. 

Which brought me to the second 
learning opportunity: the excel-
lent questions offered by the 
video. A lot of ‘whys’ encourage 
students not to accept shapes 
unquestioningly, give reasons for 
congruence of triangles, under-
stand the significance of starting 
with a square sheet of paper, and 
so on. Using the properties of the 
geometric shapes that have been 
recognized, the student can un-
derstand relationships between 
the areas of these shapes. The 
video stimulates the thinking but 
does not over-explain. 

A word on the abstraction: 
Undoubtedly, a viewer friendly 
aspect of the video is the use of 
descriptive terms for the sides of 
the right angled triangle. ‘Little 

leg’ and ‘Big leg’ intimidate young 
viewers much less than the stan-
dard ‘a’, ‘b’ and ‘c’ which mean 
so much to math teachers and 
so little to students. Of course, 
these symbols do make their way 
in at the end but only when all 
the tough work is done and the 
student can cope with the finer 
points of the proof. 

A great classroom exercise to 
introduce or reinforce the theo-
rem; the lesson can be conducted 
with planned pauses for ques-
tioning, clarifying, summarizing 
and predicting and will provide 
several learning opportunities for 
students. 

Review of a YouTube clip
http://www.youtube.com/watch?v=z6lL83wl31E&feature=youtu.be 

Among many origami videos on YouTube, you will find this proof of Pythagoras’ 

theorem. I was sent the link by an ex-student and thought that the video merited a 

review for the many teaching and learning opportunities it afforded. 

Reviewed by Sneha Titus
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What is a problem? It refers to a task or situation where 
you do not know what to do; you have no way already 
worked out to deal with the situation, no ‘formula’; you 
have to discover the way afresh, by thinking on the spot.

In this sense, a problem is not the kind of exercise you 
meet at the end of a chapter. On completing a chapter on 
quadratic equations one may be assigned a list of ten or 
twenty quadratic equations to solve. But these are ‘drill 
exercises’ — they must not be called ‘problems’. A prob-
lem is essentially non-routine. You have to throw yourself 
at it in order to solve it.

In the history of mathematics it has happened time and 
again that problems posed by mathematicians — to 
themselves or to others — would lie unsolved for a long 
time. Perhaps the most famous instance of this is that 
of Fermat’s Last Theorem (‘FLT’), whose origin lies in 
a remark casually inserted by Fermat in the margin of 
a mathematics book he was reading; the eventual solu-
tion to the problem came after a gap of three and a half 
centuries! (See the Review of Fermat’s Enigma else-
where in this issue for more about this story.) And each 
time this happens, in the struggle between mathemati-
cian and problem, the winner invariably is mathematics 
itself; for in the encounter are born fresh concepts and 

ideas, fresh ways of organizing and looking at old ideas, 
fresh notation. In the case of FLT, number theory devel-
oped enormously as a result of this encounter, and 
a whole new field was born, now called Algebraic num-
ber theory.

The problem corner is a very important compo-
nent of this magazine. It comes in three parts: Fun 
Problems, Problems for the Middle School, and 
Problems for the Senior School. For each part, 
the solutions to problems posed will appear in the 
next issue. 

To encourage the novice problem solver, we start 
each section with a few solved problems which 
convey an idea of the techniques used to under-
stand and simplify problems, and the ways used 
to approach them. 

We hope that you will tackle the problems and 
send in your solutions. We may choose your solu-
tion to be the ‘official’ solution! ‘Visual proofs’ are 
particularly welcome — proofs which use a mini-
mum of words.
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Preamble

Problems, 
The Life Blood 
of Mathematics

Many mathematicians take great pleasure in problem solving, and ‘Problem Corner’ is where we 
share interesting problems of mathematics with one other: talk about experiences connected 
with memorable problems, show the interconnectedness of problems, and so on. 

It has been said that “problems are the lifeblood of mathematics.” This short, pithy sentence contains 
within it a great truth, and it needs to be understood.
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Another instance where this happened was in the 
struggle to solve polynomial equations. Quadratic equa-
tions (i.e., equations of degree 2, like x2 + 3x + 2 = 0) were 
mastered a long time back, perhaps as early as the sev-
enth century (though there was no concept of negative 
numbers back then); cubic equations (degree 3) were 
solved by several mathematicians independently over 
the twelfth to fifteenth centuries; and biquadratic equa-
tions (degree 4; also called ‘quartic equations’) were 
solved soon after. Naturally, attention then turned to the 
quintic equation (degree 5). Here researchers hit what 
seemed to be a wall; no matter what approach was tried 
they could not cross this barrier. Eventually the matter 

was resolved but not in the way that everyone expected; 
it was shown by a young Frenchman named Evaristé Ga-
lois that in a certain sense the problem was not solvable 
at all! In the process was born one of the gems of higher 
algebra, now called Galois theory.

It is not difficult to see why a struggle of this kind will 
bring up something new. Take any real problem, tackle 
it, struggle with it and do not give up, no matter what 
happens; and examine at the end how much you have 
learnt in the process. What you find may surprise you …
It is remarkable that this happens even in those instanc-
es where you do not get the solution. But for that, it is 
essential not to ‘give up’ ….

In the problem section of Crux Mathematicorum, which is one of the best known problem journals, there occur 
these memorable words: No problem is ever closed, and the editor adds that solutions sent in late will still be con-
sidered for publication, provided they yield some new insight or some new understanding of the problem. We are 
happy to adopt a similar motto for our three problem sections. 

Submissions to the 
Problem Corner
The Problem Corner invites readers 
to send in proposals for problems and 
solutions to problems posed. Here are 
some guidelines for the submission of 
such entries.

(1) Send your problem proposals and 
solutions by e-mail, typeset as a 
Word file (with mathematical text 
typeset using the equation editor) 
or as a LaTeX file, with each prob-
lem or solution started on a fresh 
page. Please use the following ID: 
AtRiA.editor@apu.edu.in

(2) Please include your name and con-
tact details in full (mobile number, 
e-mail ID and postal address) on 
the solution sheet/problem sheet.

(3) If your problem proposal is based 
on a problem published elsewhere, 
then please indicate the source (be 
it a book, journal or website; in the 
last case please give the complete 
URL of the website).

For convenience we list some notation and terms which 
occur in many of the problems.

Coprime
Two integers which share no common factor exceeding 
1 are said to be coprime. 
Example: 9 and 10 are coprime, but not 9 and 12. Pairs 
of consecutive integers are always coprime.

Pythagorean triple (‘PT’ for short)
A triple (a, b, c) of positive integers such that a2 + b2 = c 2.

Primitive Pythagorean triple (‘PPT’ for short) 
A triple (a, b, c) of coprime, positive integers such that
a2 + b2 = c 2. Thus a PPT is a PT with an additional condi-
tion — that of coprimeness.
Example : The triples (3, 4, 5) and (5, 12, 13). The set of 
PPTs is a subset of the set of PTs.

Arithmetic Progression (AP for short)
Numbers a1, a2, a3, a4, …  are said to be in AP if
a2 – a1 = a3 – a2 = a4 – a3 = … The number d = a2 – a1
is called the common difference of the AP.
Example : The numbers 3, 5, 7, 9 form a four term AP 
with common difference 2, and 10, 13, 16 form a three 
term AP with common difference 3.

Notation used in the
problem sets
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Fun Problems

Problems for the Middle 
School

Problems for the Senior School

Fun Problems
1. A Problem from the 'Kangaroo' Math Competition

Here is a charming and memorable problem I 
came across the other day, adapted from a similar 
problem posed in the ‘Kangaroo’ Math Competi-
tion of the USA.

In a particular month of some year, there are three 
Mondays which have even dates. On which day of 
the week does the 15th of that month fall?

At first sight this look baffling. But as one looks 
more closely, a solution emerges. Please try it out 
before reading any further!

Let x denote the date of the first Monday of that 
month. Clearly, x is one of the numbers 1, 2, 3, 4, 5, 
6, 7. The Mondays of that month have the follow-
ing dates:

x,  x  + 7,  x  + 14,  x  + 21,  x + 28 (?),

with a possible question mark against x + 28;
for that particular day may fall in the next month 
(this will depend on which month it is, and on the 

size of x). For example, if x = 4, then x + 28 is not a
valid date, whichever month it is; and if x = 2 and 
the month is February, then too x + 28 is not a
valid date.

Now the numbers x,  x + 14,  x + 28 are either all 
odd or all even; and x + 7,  x + 21 are either both 
odd or both even.

Since we are told that the month has three
Mondays on even dates, it is the first possibility 
which must apply. The Mondays of that month 
thus come on dates x,  x + 14,  x + 28.

From this we deduce two things: (i) x is even; (ii) 
x + 28 is a valid date for that month.

From (ii) we deduce that x is either 1, 2 or 3. Com-
bining this with (i), we get x = 2.

So the 2nd of the month falls on Monday, as does 
16th. Hence the 15th falls on Sunday.
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Two of the fun problems in this issue deal with 
cryptarithms, so we first explain what they are and 
how they are to be approached.

A cryptarithm is a disguised arithmetic problem, 
in which digits have been replaced by letters — 
each digit being mapped to a different letter. 
(This implies that two different letters cannot 
represent the same digit.) The problem, of course, 
is to ‘decode’ the mapping — i.e., find which digit 
stands for which letter.

For example, consider the following ‘long multipli-
cation’ cryptarithm:

A B

C A
× 4

To solve this we argue as follows. Since 4 times 
the two-digit number AB yields another two-digit 
number, the tens digit of AB cannot exceed 2.
So A = 0, 1 or 2. But since A is the tens digit of AB, 
we cannot have A = 0 (else, AB would be a
one-digit number); hence A = 1 or 2.

Again, since 4 times any number is an even num-
ber, the units digit of CA is even; i.e., A is even. 

Combining this what we got earlier, we find 
that A = 2. 

Now we ask: What can B be, so that the units digit 
of 4 × B has units digit 2? Clearly it must be 3 or 8 
(because 4 × 3 = 12 and 4 × 8 = 32).

But if B = 8 then AB = 28, and 4 × 28 = 112 is a three-
digit number; too large.

So B = 3, and the answer is: 23 × 4 = 92. Thus: A = 2, 
B = 3, C = 9.

Cryptarithms do not always come this easy! But 
they generally yield to persistence and a long, 
careful examination of the underlying arithmetic. 
And, of course, there is no harm in doing a bit of 
‘trial and error’! Once one solves a cryptarithm 
there is a great feeling of satisfaction, and one 
finds that one has learnt some useful mathematics 
in the process.

Sometimes we come across a cryptarithm with 
more than one solution. People who design cryp-
tarithms consider this to be a ‘design flaw’. They 
maintain that a really well designed cryptarithm 
has a unique solution, and it should be possible to 
find it using ‘pure’ arithmetical reasoning, possibly 
with a small component of trial. 

Problem I-1-F.1 
Solve this cryptarithm:

ABCD × 4 = DCBA.
Thus, ABCD is a four digit number whose digits 
come in reverse order when the number is 
multiplied by 4. 

Problem I-1-F.2
Solve this cryptarithm: (TWO)2 = THREE.

Problem I-1-F.3 
The numbers 1, 2, 3, . . . , 99, 100, 101, . . . , 
999998, 999999 are written in a line. In this enor-
mously long string of numbers, what is the total 
number of 1s?

2. Problems For Solution - What is a cryptarithm?

Sneha Titus
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The problem we take up for discussion is the fol-
lowing; it was asked in the American Invitational 
Mathematics Examination (AIME), which is one of 
the examinations taken by students aspiring to do 
the national level olympiad of USA:

Find the least positive integer n such that every 
digit of 15 n is either 0 or 8.

Such questions look a bit baffling at first sight, but 
if one looks carefully, then some facts emerge. Let 
us try to solve to this problem.

A number whose digits are all 0s and 8s is clearly 
divisible by 8; hence 15n is divisible by 8. But 
15 = 3 × 5 and thus has no factors in common with 
8 (we say that 8 and 15 are ‘coprime’); hence n 
itself is divisible by 8. Let m = n/8. Then m has the 
property that every digit of 15m is 0 or 1. So the 
problem to solve is: 

Find the least positive integer m such that every 
digit of 15m is 0 or 1.

Once we get this least m, we multiply by 8 to get 
the required n. So let us look for the least such m.

Since 15m is a multiple of 3, the test for
divisibility by 3 must apply. Thus, the sum of the 
digits of 15m must be a multiple of 3. Since 0 does 
not contribute to the sum of the digits it follows 
that the number of 1s must be a mutiple of 3. That 
is, there must be three 1s, or six 1s, or nine 1s, and 
so on. The least positive multiple of 3 which has 
no digit outside the set. (0, 1) is clearly the 
number 111. Since we want the number to be 
divisible by 5 as well, we simply append a 0 at the 
end; we get 1110. Hence: 1110 is the least multiple 
of 15 which has the stated property.

Since 1110 =15 × 74, it follows that m = 74.
Hence the required value of n is 8 × 74 = 592. 
(Please check for yourself that 592 × 15 = 8880.)

Middle School Problem Editor : R AthmARAmAn

1. An Unusual Multiple of 15

2. Problems for Solution

Problem I-1-M.1
Find: (a) Four examples of right triangles in 

which the lengths of the longer leg and 
the hypotenuse are consecutive natural 
numbers.

 (b) Two examples of right triangles in which 
the lengths of the legs are consecutive 
natural numbers.

 (c) Two differently shaped rectangles having 
integer sides and a diagonal of length 25.

 (d) Two PPTs free from prime numbers.

Problem I-1-M.2
Let a right triangle have legs a and b and hypote-
nuse c, where a, b, c are integers. Is it possible that 
among the numbers a, b, c: 

1. All three are even?
2. Exactly two of them are even? 

3. Exactly one of them is even?
4. None of them is even?

Either give an example for each or prove why the 
statement is false.

Problem I-1-M.3 
Let a right triangle have legs a and b and hypote-
nuse c, where a, b, c are integers. Is it possible that 
among the numbers a, b, c:

1. All three are multiples of 3?
2. Exactly two of them are multiples of 3?
3. Exactly one of them is a multiple of 3?
4. None of them is a multiple of 3?

Either give an example for each or prove why the 
statement is false.

Problem I-1-M.4 
How many PPTs are there in which one of the 
numbers in the PPT is 60?
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Problem I-1-M.5 
Take any two fractions whose product is 2. 
Add 2 to each fraction.

Multiply each of them by the LCM of the denomi-
nators of the fractions. You now get two natural 
numbers. Show that they are the legs of an integer 
sided right triangle. (Example: Take the fractions 

2

5  and 
5

4 ; their product is 2. Adding 2 to each we 
get 

2

9  and 
5

14  . Multiplying by 10 which is the LCM 
of 2 and 5, we get 45 and 28. Now observe that 
452 + 282 = 532.)

Problem I-1-M.6
The medians of a right triangle drawn from the 
vertices of the acute angles have lengths 5 and 

14 . What is the length of the hypotenuse? 

Problem I-1-M.7
Let ABCD be a square of side 1. Let P and Q be the 
midpoints of sides AB and BC respectively. Join PC, 
PD and DQ. Let PC and DQ meet at R. What type 
of triangle is 3PRD? What are the lengths of the 
sides of this triangle?

Problem I-1-M.8 
Find all right triangles with integer sides such that 
their perimeter and area are numerically equal.

Problem I-1-M.9
If a and b are the legs of a right triangle, show that 

a b a b a b2
2 2 2 21 #+ + +^ h

Hint. A suitable diagram with a right triangle
inscribed in a square may reveal the answer.

Acknowledgement
Mr. Athmaraman wishes to ackowledge the generous help received from 
Shri Sadagopan Rajesh in preparing this problem set. 

Senior School Problem Editors : PRithwijit DE & ShAilESh ShiRAli

1.  A problem in number theory

We start this column with a discussion of the following problem which is adapted from one 
asked in the first Canadian Mathematical Olympiad (1969): 

Find all integer solutions of the equation a2 + b2 = 8c + 6. 

At first sight it looks rather daunting, doesn’t it?  — a single equation with three unknowns, and 
we are asked to find all its integer solutions!  But as we shall see, it isn’t as bad as it looks.

Note the expression on the right side: 8c + 6, eight times some integer plus six. That means it 
leaves remainder 6 when divided by 8. Hmmm …; so we want pairs of integers such that their 
sum of squares leaves remainder 6 when divided by 8. Put this way, it invites us to first exam-
ine what kinds of remainders are left when squared numbers are divided by 8. We build the fol-
lowing table. We have used a shortform in the table: ‘Rem’ means ‘remainder’, so ‘Rem (n2 ÷ 8)’ 
means ‘the remainder when n2 is divided by 8’. 

Please complete the table on your own and study the data. What do you see? 

Here are some striking patterns we see (and there may be more such patterns): 
1. Every odd square leaves remainder 1 when divided by 8.

n 1 2 3 4 5 6 7 8 9 10 ...
n2 1 4 9 ... ... ... ... ... ... ... ...

Rem (n2 ÷ 8)             1 4 1 ... ... ... ... ... ... ... ...
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2. The even squares leave remainders 0 and 4 when divided by 8, in alternation: 4, 0, 4, 0,….
(To say that ‘the remainder is 0’ means that there is no remainder, i.e., the square is 
divisible by 8.) 

Some thought will convince us that these patterns are ‘real’; they stay all through the sequence 
of squares and so are genuine properties of the squares. 

For example, consider pattern (1). Every even number can be represented as 2n and every odd 
number as 2n + 1, for some integer n. The quoted property concerns odd squares.

Hence we have: 
(2n + 1)2 = 4n2 + 4n + 1

 = 4n(n + 1) + 1

 = (4 × an even number) + 1

 = (a multiple of 8) + 1.

We see that every odd square leaves remainder 1 under division by 8.

In the same way, we find that the even squares leave remainders 0 and 4 under division by 8. 
Please prove this on your own. (You may want to figure out which squares leave remainder 0, 
and which squares leave remainder 4.)

With these findings let us look again at the expression a2 + b2, which is a sum of two squares. We 
have just seen that under division by 8, the only remainders possible are 0, 1 or 4. So the pos-
sible remainders when a2 + b2 is divided by 8 are the following: 

0 + 0,    0 + 1,    1 + 1,    4 + 0,    4 + 1,    4 + 4.

Hence, the possible remainders are 0, 1, 2, 4 and 5. 

Some numbers are missing in this list. We see that a sum of two squared numbers cannot leave 
remainder 3 under division by 8; nor can it leave remainder 6; nor remainder 7. Note in particu-
lar that ‘remainder 6’ is not possible.

So we have found our answer: The equation a2 + b2 = 8c + 6 has no integer solutions! 

In fact our analysis has shown us rather more: There are no integer solutions to any of the fol-
lowing three equations: 

a2 + b2 = 8c + 3,    a2 + b2 = 8c + 6,    a2 + b2 = 8c + 7.

The reasoning we have used in solving this problem is typical of such solutions. We call it ‘num-
ber theoretic reasoning’.

Another example of number theoretic reasoning
Here is another problem from number theory, of a kind often encountered. It has clearly been 
composed keeping in mind the year when India became independent. 

Find all possible square values taken by the expression n2 + 19n + 47 as n takes on all integer
values. 

Let n2 + 19n + 47 = m2. We need to find the possible values of m.

We shall now use the humble and time honoured technique of ‘completing the square’. Howev-
er to avoid fractions we first multiply by 4; this is acceptable: if n2 + 19n + 47 is a square number, 
then so is 4 (n2 + 19n + 47). Here is what we get: 
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4 (n2 + 19n + 47) = 4n2 + 76n + 188

 = (4n2 + 76n +192) + (188 − 192)

 = (2n + 19)2 − 173.

It so happens that 173 is a prime number. This will play a part in the subsequent analysis! 

Now we transpose terms and factorize:

(2n + 19)2 – 173 = (2m)2,

∴(2n + 19 − 2m) · (2n + 19 + 2m) = 173.

As 173 is prime, it can be written as a product of two integers in the following four ways 
(where we have permitted the use of negative integers): 

−1  × −173  =  1 × 173  =  −173 × −1  =  173 × 1.

Hence the pair (2n + 19 −2m, 2n + 19 + 2m) must be one of the following:

(−1, −173),  (1, 173), (−173, −1),  (173, 1).

By addition we get 4n + 38 = ±174,  i.e., n = 39 or n = −53. 

So there are precisely two values of n for which n2 + 19n + 47 is a perfect square, namely: n = 39 
and n = −53.

Next, by subtraction we get 4m = ±172, i.e., m = ±43. 

Hence, n2 + 19n + 47 takes precisely one square value, namely: 432 or 1849.

(Query: Was there something noteworthy happening in India in 1849? )

2. Problems for solution

Problem I-1-S.1
Let (a, b, c) be a PPT. 
1. Show that of the numbers a and b, one is odd and the other is even.
2. Show that the even number in{a, b} is a multiple of 4. 

Problem I-1-S.2
Let (a, b, c) be a PPT. Show that abc is a multiple of 60.

Problem I-1-S.3
Show that any right-angled triangle with integer sides is similar to one in the 
Cartesian plane whose hypotenuse is on the x-axis and whose three vertices 
have integer coordinates. (Source: Problem of the Week column, Purdue 
University.)

Problem I-1-S.4
Let a, b and c be the sides of a right-angled triangle. Let i  be the smallest 
angle of this triangle. Show that if 1/a, 1/b and 1/c too are the sides of a 
right-angled triangle, then 

sin 5 1–
2

1
i = ^ h

(Source: B Math entrance examination of the Indian Statistical Institute.)
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Problem I-1-S.5
Find all Pythagorean triples (a, b, c) in which:
(i) one of a, b, c equals 2011; (ii) one of a, b, c equals 2012.

Problem I-1-S.6
Find all PPTs (a, b, c) in which a, b, c are in geometric progression; or show 
that no such PPT exists.

Problem I-1-S.7
In any triangle, show that the sum of the squares of the medians equals 

4

3  of 
the sum of the squares of the sides.

Problem I-1-S.8
The figure shows a 3ABC in which P, Q, R are points of trisection of the 
sides, with BP = 

3

1 BC,  CQ = 
3

1 CA,  AR = 
3

1 AB. Show that the fraction   

BC CA AB
AP BQ CR

2 2 2

2 2 2

+ +

+ +

has the same value for every triangle. What is the value of the constant?  
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At a function held in December 2011 at the Insti-
tute of Mathematical Sciences in Chennai, Prime 
Minister Shri Manmohan Singh declared 2012 to 
be ‘National Mathematics Year’ and 22 December 
(birth date of the great mathematician Srinivasa 
Ramanujan) to be ‘National Mathematics Day’. He 
inaugurated a series of year-long celebrations to 
mark the 125th year of Ramanujan’s birth, and 
said in his speech, “It is a matter of concern that 
for a country of our size, the number of competent 
mathematicians that we have is badly inadequate …
There is a general perception in our society that the 
pursuit of mathematics does not lead to attractive 
career possibilities. This perception must change. 
[It] may have been valid some years ago, but today 
there are many new career opportunities available 
[in] mathematics. …” He urged the mathematical 
community to find ways and means to address the 
shortage of top quality mathematicians and reach 
out to the public.

These remarks bring home the need to ponder the 
state of mathematics education in our country: 
why, for vast numbers of students, mathematics 
remains a subject of dread, a subject that causes 
one to ‘switch off’ at an early age. What are we do-
ing to make this happen? 

In contrast we have the extraordinary story of Ra-
manujan, who was completely in love with mathe-
matics, to a degree that seems scarcely imaginable, 
and whose life may be described as a passionate 
celebration of mathematics.

It seems natural to ask what I — as a mathematics 
teacher — can do to address the situation in the 
country, and to ask, “Can I bring about a love for 
mathematics in my students?  Can I help children 
explore this beautiful garden and show them that 
it is a world in which great enjoyment is possible, 
even if one is not highly talented at it? ” 

The answer surely is: Yes. And I do not think it is 
so very difficult to do. But two things are required 
at least — a love for one’s subject, and a love of 
sharing with human beings. If these are there, 
then ways can be found and techniques developed 
that will bridge most barriers. If as a teacher I 
have a love of exploration, a love of inquiry, a love 
of playing with numbers, then surely I will be able 
to communicate it to children. It seems to me that 
before I ask for techniques of instruction, I must 
ask if I have that kind of feeling for the subject and 
for sharing it with children.

What are the factors which for so many children 
bring about a fear-filled and alienating relation-
ship with mathematics?  It is obvious that a huge 
contributory factor is a hostile learning environ-
ment, in which early contact with fear and com-
parison as instruments of learning serve to chip 
away at one’s childhood. If there is one area where 
techniques need to be found, it is this: to find ways 
of assessment, of feedback and communication, 
which do away with these traditional and intrinsi-
cally violent instruments.

Mathematics education may be in a state of crisis, 
but this is true of education as a whole, and in a 
far more serious sense. The world today is in a 
very grave situation: divisive forces are tearing us 
apart, and our greed is destroying the earth. We 
seem to be blind to the fact that our way of life is 
not sustainable. In what way can we teachers help 
in bringing some sanity to the world around us, 
through our teaching and our contact with chil-
dren?  In what way can we convey the beauty of 
exploration and sharing so that it extends beyond 
the boundaries of the classroom and spills over 
into life?  In what way can we convey a love for 
what we are doing, a love which is not bound to 
the classroom?  Let us keep these questions in the 
foreground, so that they thoroughly permeate our 
work and everything we do.

— Shailesh Shirali

The Closing Bracket …
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shortage of top quality mathematicians and reach 
out to the public.

These remarks bring home the need to ponder the 
state of mathematics education in our country: 
why, for vast numbers of students, mathematics 
remains a subject of dread, a subject that causes 
one to ‘switch off’ at an early age. What are we do-
ing to make this happen? 

In contrast we have the extraordinary story of Ra-
manujan, who was completely in love with mathe-
matics, to a degree that seems scarcely imaginable, 
and whose life may be described as a passionate 
celebration of mathematics.

It seems natural to ask what I — as a mathematics 
teacher — can do to address the situation in the 
country, and to ask, “Can I bring about a love for 
mathematics in my students?  Can I help children 
explore this beautiful garden and show them that 
it is a world in which great enjoyment is possible, 
even if one is not highly talented at it? ” 

The answer surely is: Yes. And I do not think it is 
so very difficult to do. But two things are required 
at least — a love for one’s subject, and a love of 
sharing with human beings. If these are there, 
then ways can be found and techniques developed 
that will bridge most barriers. If as a teacher I 
have a love of exploration, a love of inquiry, a love 
of playing with numbers, then surely I will be able 
to communicate it to children. It seems to me that 
before I ask for techniques of instruction, I must 
ask if I have that kind of feeling for the subject and 
for sharing it with children.

What are the factors which for so many children 
bring about a fear-filled and alienating relation-
ship with mathematics?  It is obvious that a huge 
contributory factor is a hostile learning environ-
ment, in which early contact with fear and com-
parison as instruments of learning serve to chip 
away at one’s childhood. If there is one area where 
techniques need to be found, it is this: to find ways 
of assessment, of feedback and communication, 
which do away with these traditional and intrinsi-
cally violent instruments.

Mathematics education may be in a state of crisis, 
but this is true of education as a whole, and in a 
far more serious sense. The world today is in a 
very grave situation: divisive forces are tearing us 
apart, and our greed is destroying the earth. We 
seem to be blind to the fact that our way of life is 
not sustainable. In what way can we teachers help 
in bringing some sanity to the world around us, 
through our teaching and our contact with chil-
dren?  In what way can we convey the beauty of 
exploration and sharing so that it extends beyond 
the boundaries of the classroom and spills over 
into life?  In what way can we convey a love for 
what we are doing, a love which is not bound to 
the classroom?  Let us keep these questions in the 
foreground, so that they thoroughly permeate our 
work and everything we do.

— Shailesh Shirali

The Closing Bracket …
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Specific Guidelines for Authors 

Prospective authors are asked to observe the following guidelines. 

1. Use a readable and inviting style of writing which attempts to capture the reader's attention at the start. 

The first paragraph of the article should convey clearly what the article is about. For example, the opening 

paragraph could be a surprising conclusion, a challenge, figure with an interesting question or a relevant 

anecdote. Importantly, it should carry an invitation to continue reading. 

2. Title the article with an appropriate and catchy phrase that captures the spirit and substance of the article. 

3. Avoid a 'theorem-proof' format. Instead, integrate proofs into the article in an informal way. 

4. Refrain from displaying long calculations. Strike a balance between providing too many details and 

making sudden jumps which depend on hidden calculations. 

5. Avoid specialized jargon and notation — terms that will be familiar only to specialists. If technical terms 

are needed, please define them. 

6. Where possible, provide a diagram or a photograph that captures the essence of a mathematical idea. 

Never omit a diagram if it can help clarify a concept. 

7. Provide a compact list of references, with short recommendations. 

8. Make available a few exercises, and some questions to ponder either in the beginning or at the end of the 

article. 

9. Cite sources and references in their order of occurrence, at the end of the article. Avoid footnotes. If 

footnotes are needed, number and place them separately. 

10. Explain all abbreviations and acronyms the first time they occur in an article. Make a glossary of all such 

terms and place it at the end of the article. 

11. Number all diagrams, photos and figures included in the article. Attach them separately with the e-mail, 

with clear directions. (Please note, the minimum resolution for photos or scanned images should be 

300dpi). 

12. Refer to diagrams, photos, and figures by their numbers and avoid using references like 'here' or 'there' or 

'above' or 'below'. 

13. Include a high resolution photograph (author photo) and a brief bio (not more than 50 words) that gives 

readers an idea of your experience and areas of expertise. 

14. Adhere to British spellings – organise, not organize; colour not color, neighbour not neighbor, etc. 

15. Submit articles in MS Word format or in LaTeX. 



Suggested Topics and Themes

Articles may be sent to :

AtRiA.editor@apu.edu.in

Articles involving all aspects of mathematics

are welcome. An article could feature: a new

look at some topic; an interesting problem; an

interesting piece of mathematics; a connec-

tion between topics or across subjects; a

historical perspective, giving the background

of a topic or some individuals; problem solving

in general; teaching strategies; an interesting

classroom experience; a project done by a

student; an aspect of classroom pedagogy; a

discussion on why students find certain topics

difficult; a discussion on misconceptions in

mathematics; a discussion on why mathemat-

ics among all subjects provokes so much fear;

an applet written to illustrate a theme in

mathematics; an application of mathematics

in science, medicine or engineering; an algo-

rithm based on a mathematical idea; etc.

Also welcome are short pieces featuring:

reviews of books or math software or a

YouTube clip about some theme in mathemat-

ics; proofs without words; mathematical

paradoxes; ‘false proofs’; poetry, cartoons or

photographs with a mathematical theme;

anecdotes about a mathematician; ‘math from

the movies’.

Please refer to specific editorial policies and

guidelines below.

Call for Articles!!!
At Right Angles welcomes articles from math teachers, educators, practitioners, parents

and students. If you have always been on the lookout for a platform to express your

mathematical thoughts, then don’t hesitate to get in touch with us.

Policy for Accepting Articles

‘At Right Angles' is an in-depth, serious magazine on

mathematics and mathematics education. Hence articles

must attempt to move beyond common myths, perceptions

and fallacies about mathematics.

The magazine has zero tolerance for plagiarism. By

submitting an article for publishing, the author is assumed to

declare it to be original and not under any legal restriction for

publication (e.g. previous copyright ownership). Wherever

appropriate, relevant references and sources will be clearly

indicated in the article.

'At Right Angles' brings out translations of the magazine in

other Indian languages and uses the articles published on The

Teachers' Portal of Azim Premji University to further

disseminate information. Hence, Azim Premji University

holds the right to translate and disseminate all articles

published in the magazine.

If the submitted article has already been published, the author

is requested to seek permission from the previous publisher

for re-publication in the magazine and mention the same in

the form of an 'Author's Note' at the end of the article. It is also

expected that the author forwards a copy of the permission

letter, for our records. Similarly, if the author is sending

his/her article to be re-published, (s) he is expected to ensure

that due credit is then given to 'At Right Angles'.

While 'At Right Angles' welcomes a wide variety of articles,

articles found relevant but not suitable for publication in the

magazine may - with the author's permission - be used in

other avenues of publication within the University network.



The Ram Jhula and the Lakshman Jhula in Rishikesh,

Uttarakhand (India), spanning the River Ganga

(Source: http://www.snapshotsofindia.com/Rishikesh/Rishikesh.html)

Two familiar suspension bridges

A water fountain, and a solar reflector
(Sources: http://mathforum.org/ and http://www.tinytechindia.com/

A well built suspension bridge is a magnificent sight, a marvel of architecture and engineering; a

‘symphony in steel’. There are many bridges of this kind across the world, and the most famous is

surely the Golden Gate Bridge in the bay area of San Francisco (USA); it is more than 1 km long. Still

longer is the Akashi Kaikyo Bridge in Japan. Two examples which will probably be familiar to most

Indian readers are the Ram Jhula and the Lakshman Jhula in Rishikesh (Uttarakhand), both spanning

the River Ganga. The beauty of such a bridge may hide the mathematics that lies ‘underneath’ and

which is just as beautiful — the fact that the two immensely strong curving cables which hold the

bridge with vertical rods have a parabolic shape.

After the straight line (the simplest geometric object possible), we have the conic sections which are

second degree curves: the circle, parabola, ellipse and hyperbola (and one degenerate case — a ‘pair

of straight lines’). Each of these is richly endowed with geometric properties; and the parabola, richly

so. Engineers have found ingenious ways of putting these properties to use. Shown here are two more

‘incarnations’ of the parabola - the curve seen in a fountain, and a solar reflector. (In the latter case, the

shape of the mirror is a paraboloid, which is obtained by rotating a parabola about its central axis.)
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