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The Most Famous Theorem

The Theorem of

Pythagoras

Understanding History – Who, When and Where

Does mathematics have a history? In this article the author studies the tangled and

multi-layered past of a famous result through the lens of modern thinking, look-
ing at contributions from schools of learning across the world, and connecting the

mathematics recorded in archaeological finds with that taught in the classroom.

Shashidhar Jagadeeshan

I

magine, in our modern era, a very important theorem being

attributed to a cult figure, a new age guru, who has collected

a band of followers sworn to secrecy. The worldview of

this cult includes number mysticism, vegetarianism and the

transmigration of souls! One of the main preoccupations of

the group is mathematics: however, all new discoveries are

ascribed to the guru, and these new results are not to be shared

with anyone outside the group. Moreover, they celebrate

the discovery of a new result by sacrificing a hundred oxen!

I wonder what would be the current scientific community’s

reaction to such events.

This is the legacy associated with the most ‘famous’ theorem

of all times, the Pythagoras Theorem. In this article, we will

go into the history of the theorem, explain difficulties historians

have with dating and authorship and also speculate as to

what might have led to the general statement and proof of

the theorem.
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Making sense of the history

Often in the history of ideas, especially when there

has been a discovery which has had a significant

influence on mankind, there is this struggle to find

out who discovered it first. This search is very

often coloured by various biases

and obscured by the lack of au-
thentic information and scholar-
ship. The Pythagoras Theorem

suffers from the same fate. In this

article I hope to give a summary

of current understanding and, not

being an expert historian, would

like to state right at the beginning

that I might have left out some

major contribution.

Before proceeding further let us,

at the cost of redundancy, recall

the Pythagoras Theorem as stated

by Euclid (I.47 of the Elements)

and refer to it from now on as PT

(P here can stand for Pythagoras or ‘Preeminent’!).

Obviously the first challenge for historians is the

name.

Why Pythagoras? Greek scholars seem to be in

agreement that the first person to clearly state PT

in all its generality, and attempt to establish its

truth by the use of rigorous logic (what we now

call mathematical proof), was perhaps Pythagoras

of Samos. We actually know

very little about Pythagoras,

and what we do know was

written by historians centu-
ries after he died.

Legend has it that Pythagoras

was born around 572 B.C. on

the island of Samos on the

Aegean Sea. He was perhaps

a student of Thales, a famous

Greek philosopher and math-
ematician who was born half

a century before Pythagoras.

It is believed that Pythagoras

travelled to Egypt, Babylon

and even to India before he

returned to Croton, a Greek settlement in south-
east Italy. Here he seems to have gathered a group

of followers forming what we call the Pythagorean

sect, with beliefs and practices as described in

the introduction. It is believed that many Greek

philosophers (Plato, for instance) were deeply in-
fluenced by Pythagoras, so much so that Bertrand

Russell felt that he should be considered one of

the most influential Western philosophers.

We will return to the Pythagorean School after we

take a detour and look at contributions outside

the Greek world (this is often difficult for many

Eurocentric historians to swallow!)

The problem of dating!

As students of history we must realise that the

greatest challenge historians of antiquity face is

that of giving accurate dates to events. There are

many reasons for this, including the fact that many

cultures were oral, records of events were burnt,

languages of some cultures have yet to be deci-
phered and very often, as mentioned earlier, our

only knowledge about people and events are from

historians referring to them many years later. So

I have tried to use a very conservative and broad

Pythogoras (Approx 572 BC to 475 BC) timeline.

Pythagoras

Theorem (PT)

In right-angled

triangles, the square

on the side

subtending the

right angle is equal to

the sum of the squares

on the sides containing

the right angle.
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Let us now try and understand the history of PT

chronologically.

The Mesopotamian contribution

You may recall from your school history that one

of the oldest known civilizations (Mesopotamia

or Babylonia) existed in the geographical region

between the Tigris and Euphrates rivers. Records

of this civilization date back to 3500 BC. They

used the sexagesimal system (base 60) and used

mathematics for record keeping and astronomy.

They also seemed interested in number theory

and geometry.

We know this because they left records of their

work on thousands of clay tablets, five hundred

of which seem mathematical in nature. There are

two main sources that tell us about the Mesopota-
mian contribution to the PT. These are clay tablets

with wedge shaped markings on them. Historians

date these to the period of Hammurabi between

1800 BC and 1600 BC.

The tablet known as YBC 7289 (tablet number

7289 from the Yale Babylonian Collection) shows

a tilted square with wedged shaped markings. The

markings show calculations for the approximation

of 30 2 . This would not have been possible

Fig. 1,

YBC 7289

Mesopotamia India Greece China

YBC 7289

Tilted square with diagonal and

approximation

of 2.

Plimpton 322

Table of

Pythagorean triples. Pythagoras

of Samos.

Sulbasutras

Pythagorean triples. Statement of PT for a square. General statement of PT. Approximation of 2.

Use of PT for geometrical constructions. Chou Pei Suan Ching

Statement of PT. Diagrammatic proof

for (3,4,5) triangle.

BC AD

1800 1600 800 600 500 300 200 0

Euclid

Proof of PT in complete

generality based on an

axiomatic system.

Proof of the converse.

Pythagorean School

Statement and proof of PT. Use of PT in geometrical constructions. Number theoretic properties of Pythagorean triples. Discovery of irrationals and proof that 2 is irrational.

Timeline of the History of the Pythogoras Theorem (PT)
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without the knowledge of the PT or at least the

special case of the isosceles right-triangle (see

Figure 5).

The second is referred to as Plimpton 322, a

slightly damaged clay tablet measuring 13×9×2

cm and a part of the University of Columbia

collection. It contains a 15×4 table of numbers.

The table is thought to be a list of Pythagorean

triples. Pythagorean triples are integers (a, b, c)

which satisfy the equation a2 +b2 =c

2

(see articles

on Pythagorean triples). For example (3,4,5) is a

Pythagorean triple.

Let us look at the entries in the

tablet. The tablet contains errors in

Rows 2, 9, 13 and 15 and the origi-
nal entries were in base 60, but the

table below is in base 10 with the

errors corrected. Here ‘s’ stands for

the shortest side of a right-triangle,

‘d’ for the hypotenuse and ‘l’ for the

other side (see Figure 3).

Let us look at entries in the first

row. It is not hard to check that

1692

–1192

=1202

. That is, (119, 120,

169) is a Pythagorean triple. Simi-
larly we can verify that (s,l,d) form

Pythagorean triples in each row (if

you are sceptical – go ahead and do

the computations!) So it seems clear

that the tablet was a list of Pythagorean triples.

However, mathematical historians are left with

many questions. What exactly does Column 1

represent? Is there any pattern behind the choice

of ‘s’ and ‘d’ ? Is there some general principle at

work here?

There are three main interpretations of the pur-
pose of these tablets. The first is that Plimpton

322 is a trigonometric table of some sort.

Column 1 is Csc2

A, where angle ‘A’ ranges from

just above 45° to 58°.

Fig.2, Plimpton 322

(d/l)2 s d

(169/120)2 119 169 Row 1

(4825/3456)2 3367 4825 Row 2

(6649/4800)2 4601 6649 Row 3

(18541/13500)2 12709 18541 Row 4

(97/72)2 65 97 Row 5

(481/360)2 319 481 Row 6

(3541/2700)2 2291 3541 Row 7

(1249/960)2 799 1249 Row 8

(769/600)2 481 769 Row 9

(8161/6480)2 4961 8161 Row 10

(75/60)2 45 75 Row 11

(2929/2400)2 1679 2929 Row 12

(289/240)2 161 289 Row 13

(3229/2700)2 1771 3229 Row 14

(106/90)2 56 106 Row 15

Table 1 - Plimpton 322 in modern notation

d l

s

A

Fig. 3
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The second and third interpretations are more

involved and we will require another table to

understand them! (See Table 2; the roles played

by ‘x’ and ‘y’ will become clear after reading the

following two paragraphs.)

Let us examine the first, last and middle rows

of Plimpton 322 to see if any pattern emerges.

Neugebauer and others have proposed that ‘s’ and

‘d’ are generated by a pair of positive integers ‘p’

and ‘q’, which are of opposite parity and relatively

prime. The relationship between s, d, l, p and q

is as follows: s=p2

–q2

, d=p2

+q2

, l = 2pq. In fact,

if we are given any two integers p, q relatively

prime, with one of them even, we can generate all

Pythagorean triples. Quite a remarkable feat, don’t

you think? The article by S Shirali (elsewhere

in this issue) explores various ways of generat-
ing Pythagorean triples and in the next issue this

method will be explored in detail.

Of course one can now ask, is there a pattern in

the choice of p and q (and also x and y)? They are

so-called ‘regular’ numbers (numbers of the form

2a3b5c

, where a, b, c are integers). Can you see the

connection between 2, 3, 5 and the sexagesimal

system? Moreover, there is a pattern on how p, q,

x, y change as we move from Row 1 to 15; but this

is quite technical, so for more details we refer the

reader to [AA] and [RE].

The third interpretation, first put forward by Bru-
ins in 1949, is called the ‘reciprocal’ method. Here

the table is believed to be generated by a pair of

rational numbers ‘x’ and ‘y’ such that xy = 1

(So x and y are a pair of reciprocals.)

Here l

s x y

2

– = and l

d x y

2 = +

It is impossible to say for sure which interpreta-
tion is correct. But scholars feel that apart from

Plimpton 322 there is no other evidence of knowl-
edge of trigonometry in Mesopotamia, and that

the second interpretation is not in keeping with

the approach to mathematics found in the other

tablets. Many scholars favor the ‘recipro-
cal’ method as they feel that it is not only

mathematically valid, but is also historically,

archeologically and linguistically consistent

with the style and conventions of ancient

Babylonian mathematics.

It may amuse readers to know that scholars like

Robson [RE] feel that the author of Plimpton 322

was a teacher, and the tablet is a kind of ‘question

bank’ which would “have enabled a teacher to set

his students repeated exercises on the same math-
ematical problem, and to check their intermediate

and final answers without repeating the calcula-
tions himself.”

These two tablets, along with evidence from tab-
lets found in Susa and Israel from the Babylonian

period, clearly demonstrate that they were well

versed with the PT and were also adept at using it.

Contribution from India

The history of India and Indian mathematics poses

many challenges to historians. The difficulties

range from giving a balanced and accurate picture

to dating various events. At the same time, there

seems to be a great deal of interest today in the

contributions of the Indian subcontinent to math-
ematics. This is particularly so after the discovery

of the Kerala School of mathematics, which came

very close to discovering calculus long before

Newton and Leibnitz. Mathematics in India was

inspired by astronomy, record keeping, religion

and perhaps sheer curiosity.

Historians believe that early Indian civilizations

date to the third or fourth millennium BC. Our

main interest is in the Sulbasutras, which literally

means the ‘rule of cords.’ They are a series of texts

(Vedangas) which accompany the Vedas and give

detailed instructions on how rituals are to be per-
formed and sacrificial altars (Vedis) constructed.

The most important Sulbasutras are attributed to

Boudhayana, Manava, Apastamba and Katyayana.

Boudhayana is believed to have lived around 800

BC and Apasthamba around 500 BC.

What is of significance is that in the Sulbasutras

we find a general statement of the PT as follows

[see PK]: “The cord [equal to] the diagonal of an

Row# p q x y S d

1 12 5 144/60 25/60 119 169

8 32 15 128/60 101250/ 216000 799 1249

15 9 5 108/60 20/36 56 106

Table 2
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oblong makes [the area] that both the length and

width separately [make]. By knowing these [things],

the stated construction is [made]. ” {Apastamba Sul-
basutra 1.4 and Boudhayana Sulbasutra 1.12}

This may be the earliest general statement (at

least for right triangles with rational sides) of the

PT, perhaps predating 800 BC. However, we must

mention that there is a reference to this result in

China clearly before Pythagoras, but whose exact

date is unknown. We will discuss this in the sec-
tion on the Chinese contribution.

We also find in the Sulbasutras (see [PK]) the

application of the PT to a square (isosceles right

triangle): “The cord [equal to] the diagonal of a

[square] quadrilateral makes twice the area. It is

the doubler of the square.” {Apastamba Sulbasutra 1.6,

Boudhayana Sulbasutra 1.9 and Katyayana Sulbasutra 2.9}

We will discuss in a later section how perhaps

the recognition of PT for the special case of the

isosceles right triangle led to the discovery of the

general theorem.

The Sulbasutras also contain Pythagorean triples,

approximation of square roots and the use of PT

for many geometrical constructions. Why don’t

you try your hand (using a straightedge and

compass) at some of the constructions found in

the Sulbasutras? For example, try constructing

a square whose area is equal to the sum of two

given squares. Or, try constructing a square whose

area is equal to that of a given rectangle.

What emerges clearly is that the Sulbakaras (au-
thors of the sutras) had a very good understand-
ing of PT and its applications, both to extracting

roots and to geometrical constructions. We must,

however, acknowledge that there is no evidence

that the notion of proving mathematical state-
ments was part of their framework.

Chinese contribution

We are all aware that China has been home to a

very ancient civilization that developed along the

rivers of Yangtze and Huang Ho more than 5000

years ago. The Chinese were interested in many

areas of mathematics, again perhaps driven by

astronomy, the need to have accurate calendars

and sheer intellectual interest.

As far as the PT is concerned, our main source of

information is the Chou Pei Suan Ching (The Ar-
ithmetical Classic of the Gnomon and the Circular

Paths of Heaven). The exact date of this book has

been debated for a long time. It refers to a con-
versation between the Duke Zhou Gong and his

minister Shang Kao around 1000 BC, discussing

the properties of a right triangle, with a statement

of the PT and a diagrammatic proof given. It is not

clear if such a conversation did take place. How-
ever, scholars believe that earlier results were put

together in the form of a book, from 235 BC to 156

BC, and were edited by Zhang Chang around 156

BC. Further, a famous mathematician Zhao Shuang

wrote commentaries on the Chou Pei, adding orig-
inal material of his own, including the well-known

diagrammatic proof (see Figures 4, 7 and 8).

The PT in Chinese literature is referred to as

‘kou ku’ (see [JG]). We will discuss the diagram-
matic proof in the section on how the Greeks

might have arrived at a general proof for the PT.

What is clear is that the Chinese were not only

aware of PT long before Pythagoras, but had many

applications for it and came up with a pictorial

demonstration for the (3, 4, 5) case which can be

generalized.

Returning to the Greeks

Having traversed the globe, let us return to the

Greek contribution. There is no doubt that the

Greeks were the first to bring in the notion of

proof in mathematics. The Pythagorean School

seems to have definitely had a proof for PT at least

Fig. 4 - Chou Pei Suan Ching
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for rational sides. Stephen Hawking argues in [HS]

that they had perhaps an incomplete proof for the

general theorem, because Euclid took great pains

to give a new and complete proof in the Elements.

The Pythagorean School were also the first to

prove rigorously that the square root of 2 is irra-
tional. While earlier civilizations did come up with

approximations for 2 there is no clear evidence

that they were aware of irrationals.

Before we conclude the Greek contribution we

should mention Euclid’s role (approx 300 BC).

As you perhaps know, he is the author of

Elements, a collection of 13 books containing 465

propositions from plane geometry, number theory

and solid geometry. He was the first person to

create an axiomatic framework for mathematics

with rigorous proofs. Once again we know very

little of Euclid, except that he worked in the great

library of Alexandria during the rule of Ptolemy I

(323–283 BC). Euclid gave two rigorous proofs of

PT: one is the 47th proposition of Book I and the

other is the 31st proposition of Book VI.

Proposition VI.31 is a generalization of PT, for

while Proposition I. 47 refers to squares con-
structed on the three sides of a right-angled

triangle, Proposition VI.31 refers to any figure

constructed similarly on the sides of a right-trian-
gle. For example, if semicircles are constructed on

the sides of a right-triangle, then the area of the

semicircle on the diagonal is equal to the sum of

the areas of the semicircles on the other two sides.

He was also the first to give a rigorous proof of the

converse of PT (proposition 48 of Book I).

Here is a lovely compliment (sourced from [HS]) a

fellow Greek, Proclus, pays to Euclid several centu-
ries later: “If we listen to those who wish to recount

ancient history, we may find some of them referring

this theorem (PT) to Pythagoras and saying that he

sacrificed an ox in honour of his discovery. But for

my part, while I admire those who first observed the

truth of this theorem, I marvel more at the writer of

the Elements, not only because he made it fast by a

most lucid demonstration, but because he compelled

assent to the still more general theorem by the

irrefragable arguments of science in the sixth Book.

For in that Book he proves generally that, in right-
angled triangles, the figure on the side subtending

the right angle is equal to the similar and similarly

situated figures described on the sides about the

right angle.”

What motivated the discovery of PT?

It is a matter of great curiosity as to how human be-
ings all over the world discovered a result such as

the PT. There are two main threads of speculation.

Fig. 5 Fig. 6
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The first thread looks at the special isosceles right

triangle. Historians believed that tiles as shown in

Figure 5 would have been the inspiration for the

mathematically curious.

If that figure is not self evident to you, what about

Figure 6?

The second thread looks at the triple (3, 4, 5).

There is evidence that the Egyptians knew the

relation 32 +42

= 52

. However, there is no evidence

that they knew that a triangle with side lengths

3, 4 and 5 units was right-angled. Stephen

Hawking and others speculate that the next jump

in ideas took place when there was a realisation,

much along the lines of the Chinese, that a right

triangle with legs of length 3 and 4 has hypot-
enuse of length 5, essentially proving PT for this

special case.

Let us see how this is done. Start with a right-
angled triangle of side lengths 3 and 4. You then

wrap around 4 such right-triangles to form a 7 × 7

square (see Figures 7 and 8).

Now look at the inner square that is sitting on the

hypotenuse of each of the four triangles.

There are two ways to see that it is 25 square

units. One is that the original square is 49 square

units and it is made up of two 3 × 4 rectangles

and the inner square. The other is that the inner

square is made of two 3 × 4 rectangles and a unit

square. Hence we have shown that a triangle with

legs of size 3 and 4 units has a hypotenuse of size

5 and the PT holds for this triangle.

This method can be generalized to other right-an-
gled triangles with sides of integer lengths. For ex-
ample, take a right-angled triangle whose legs are

of length 5 and 12. Then using the method above,

one will get a 17 × 17 square with an inner square

of size 13 × 13. This shows that the hypotenuse

of such a triangle is 13 units. And using the fact

that 52 +122

= 132

, we have once again a specific

example of the PT. The above figure can also be

used to establish PT for any right-angled triangle.

Can you use algebra and prove it for yourself?

This is essentially how Bhaskara proved PT in the

eleventh century AD.

It is not clear if Pythagoras and others used the

method I have just asked you to prove. As men-
tioned earlier, since Euclid gave a completely

different proof, historians believe that Pythagoras

might have used the method of similar triangles

to establish PT. However since they dealt only

with rational numbers, this proof would have

been incomplete.

Fig. 7
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Are you familiar with the proof of PT using similar

triangles? If not, why don’t you give it a try? Figure

9 will help you. It is considered the shortest proof

of the Pythagoras theorem!

Endnote

I hope in the course of reading this article you

have got a sense of the rich history and depth

behind the Pythagoras Theorem and how chal-
lenging ancient history is. You probably have also

realized that it is a quirk of fate that has named

the most famous theorem after Pythagoras. It well

might have been the ‘Mitharti siliptim (Square of

the diagonal) Theorem’ from Mesopotamia or the

‘Sulba Theorem’ from India or the ‘Kou ku Theo-
rem’ from China! So, what is in a name?
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