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THE GOLDEN 
RATIO 
Unexpectedly
MARCUS BIZONY AKepler triangle is a right-angled triangle whose

sides are in Geometric Progression, which requires
that its sides are in the ratio 1 :

√ϕ : ϕ where
ϕ = (1+

√
5)/2 is the Golden Ratio.

B C

A

1

1/ϕ

1/√ϕ

θ

Figure 1

Clearly, if the length of the hypotenuse is 1 (see Figure 1),
the sides will have lengths

1
ϕ ,

1√ϕ
, 1.

If θ is the larger acute angle of the triangle, then
tan θ = √ϕ. This angle is the acute solution to the equation
tan2 θ cos θ = 1. (For, since ϕ2 = ϕ + 1, we get
tan4 θ = tan2 θ + 1, i.e., tan4 θ = sec2 θ, which yields
tan2 θ = sec θ since θ is acute. Hence tan2 θ cos θ = 1.)

For clarity, we note that we are using here the symbol ϕ to
represent the value 1.618 . . ., which means that
ϕ2 = ϕ + 1. The other value which could equally well be
called the Golden Ratio is the reciprocal of this number,
which is also ϕ − 1, and which is here given the symbol G.
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AB = 1

BC = G

AC = G 1/2

CD = G 3/2

DE = G 2

EF = G 5/2

FH = G 3

HJ = G 7/2

JK = G 4

AD = G

AF = G 2

AJ = G 3

Figure 2
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Dropping perpendiculars progressively from the
right-angle vertex to the hypotenuse and then
back to a leg (see Figure 2) produces lengths which
are powers of G 1/2; continuing the process
generates similar triangles, so any length of the
form Gn/2 can be achieved in this manner.

Now consider an isosceles triangle whose equal
sides have length 1. Clearly there are lots of
possible ‘shapes’ for it, and presumably therefore
different areas for its incircle (see Figure 3). It
seems reasonable to ask which of these isosceles
triangles has the largest incircle.

An intuitive response might be that the required
isosceles triangle is going to be equilateral;
certainly if that turned out to be the case, it would
fit one’s sense of what is ‘right’. And, indeed, it is
when the isosceles triangle is equilateral that the
largest proportion of its area is included in its
incircle. But if the incircle itself should be as large
as possible, we need to make the isosceles triangle

not equilateral but in the form of a double Kepler
triangle, produced by placing two Kepler triangles
alongside each other, with their longer legs
coinciding (see Figure 4).

To see why, we need first to understand something
about the incentre of a triangle, which is at the
same distance r from each of its sides (see
Figure 5). The figure shows a triangle and its
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incircle, and also lines connecting the vertices of
the triangle to the incentre; they demonstrate how
the area of the triangle can be seen as the sum of
the areas of three smaller triangles. Of course the
radii are perpendicular to the sides and therefore
serve as heights on those bases for the smaller
triangles.

Thus the area of the whole triangle is
ra/2+ rb/2+ rc/2 = rs where s is the
semi-perimeter of the triangle, and we deduce that
for any triangle the length r of its in-radius is given
by the formula

r =
area of triangle

semi-perimeter of triangle
.

In the case of an isosceles triangle whose equal
sides have length 1 and with base angle x, we have:

area of triangle = cos x · sin x = 1
2
sin 2x,

perimeter of triangle = 2+ 2 cos x.

Hence the radius of the incircle is given by

r =
sin 2x

2+ 2 cos x
.
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Setting the derivative of r equal to zero gives

(2+ 2 cos x)2 cos 2x− sin 2x(−2 sin x) = 0,

∴ 4(1+ cos x)
(
2 cos2 x− 1

)

+ 4 sin2 x cos x = 0,

∴ (1+ cos x)
(
2 cos2 x− 1

)

+ cos x
(
1− cos2 x

)
= 0,

∴ 2 cos2 x− 1+ cos x(1− cos x) = 0,

since 1+ cos x ̸= 0. The equation in the last line
yields

cos2 x+ cos x− 1 = 0,
so that cos x = G. The verification that this indeed
yields a maximum value of r is left to the reader.

This particular isosceles triangle (△ABD, with
AB : AD : BD = 1 : 1 : 2/ϕ) has the additional
interesting property that if AC is the altitude to its
base, then the perpendicular to AC through the
incentre I of the triangle meets side AB at the foot
E of the perpendicular CE to that side from the
midpoint C of the base BD; see Figure 6.

Moreover, I is a Golden Point of AC (i.e., divides
it in the Golden Ratio). Further, the point V
where BI meets CE is a Golden Point of both CE
and BI. Readers might like to tackle these proofs
for themselves.
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