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An example of constructive defining: 

From a GOLDEN 
RECTANGLE to GOLDEN 
QUADRILATERALS 
and Beyond Part 1

There appears to be a persistent belief in mathematical
textbooks and mathematics teaching that
good practice (mostly; see footnote1) involves first

providing students with a concise definition of a concept
before examples of the concept and its properties are further
explored (mostly deductively, but sometimes experimentally
as well). Typically, a definition is first provided as follows:

• Parallelogram: A parallelogram is a quadrilateral with half
turn symmetry. (Please see endnotes for some comments
on this definition.)

• The number e = limn→∞

(
1 +

1
n

)n

= 2.71828 . . .

• Function: A function f from a set A to a set B is a relation
from A to B that satisfies the following conditions:
(1) for each element a in A, there is an element b in B

such that <a, b> is in the relation;
(2) if <a, b> and <a, c> are in the relation, then b = c.

1It is not being claimed here that all textbooks and teaching practices follow the
approach outlined here as there are some school textbooks such as Serra (2008)
that seriously attempt to actively involve students in defining and classifying
triangles and quadrilaterals themselves. Also in most introductory calculus
courses nowadays, for example, some graphical and numerical approaches are
used before introducing a formal limit definition of differentiation as a tangent
to the curve of a function or for determining its instantaneous rate of change at
a particular point.
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Following such given definitions, students are
usually next provided with examples and
non-examples of the defined concept to
‘elucidate’ the definition. The problem with this
overwhelmingly popular approach is that it
creates the misconception that mathematics
always starts with definitions, and hides from
students that a particular concept can often be
defined in many different equivalent ways.
Moreover, students are given no idea where the
definition came from and on what grounds this
particular definition was chosen. By providing
students with a ready-made definition, they are
also denied the opportunity to engage in the
process of mathematical defining themselves, and
hence it unfortunately portrays to them an image
of mathematics as an ‘absolutist’ science (Ernest,
1991).

In general, there are essentially two different ways
of defining mathematical concepts, namely,
descriptive (a posteriori) and constructive (a priori)
defining. Descriptive definitions systematize
already existing knowledge, whereas constructive
definitions produce new knowledge (Freudenthal,
1973).

The purpose of this article is to heuristically
illustrate the process of constructive defining in
relation to a recent exploration by myself of the
concept of a ‘golden rectangle’ and its extension to
a ‘golden rhombus’, ‘golden parallelogram’,
‘golden trapezium’, ‘golden kite’, etc. Though
these examples are mathematically elementary, it
is hoped that their discussion will illuminate the
deeper process of constructive defining.

Constructively Defining a ‘Golden Rhombus’

“... [The] algorithmically constructive and
creative definition ... models new objects
out of familiar ones.”

– Hans Freudenthal (1973: 458).

Constructive (a priori) defining takes place when a
given definition of a concept is changed through
the exclusion, generalization, specialization,
replacement or addition of properties to the
definition, so that a new concept is constructed in
the process.

Since there is an interesting side-angle duality
between a rectangle (all angles equal) and a
rhombus (all sides equal) (see De Villiers,
2009:55), I was recently considering how to define
the concept of a ‘golden rhombus’. Starting from
the well-known definition of a golden rectangle as
a rectangle which has its adjacent sides in the ratio
of the golden ratio φ = 1.618 . . ., I first
considered the following analogous option in
terms of the angles of the rhombus (Please see
endnotes for the definition of the golden ratio):

A golden rhombus is a rhombus with adjacent
angles in the ratio of φ.

Assuming the acute angle of the rhombus as x, this
definition implies that:

180◦ − x
x

= φ,∴ x = 180◦
1 + φ

≈ 68.75◦.

An accurate construction of a ‘golden rhombus’
fulfilling this angle condition is shown in Figure 1.

Figure 1. Golden rhombus with angles in ratio phi

Though this particular rhombus looks reasonably
visually appealing, I wondered how else one might
reasonably obtain or define the concept of a
golden rhombus. Since a rectangle is cyclic and a
rhombus has an inscribed circle, I hit upon the
idea of starting with a golden rectangle EFGH
(with EH

EF = φ) and its circumcircle, and then
constructing the rhombus ABCD with sides
tangent to the circumcircle at the vertices of the
rectangle. (Note that it follows directly from the
symmetry of the rectangle EFGH that ABCD is a
rhombus). Much to my surprised delight, I now
found through accurate construction and
measurement with dynamic geometry software as
shown in Figure 2 that though the angles were no
longer in the ratio phi, the diagonals for this
rhombus now were!
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Figure 2. Golden rhombus with diagonals in ratio phi

It is not difficult to explain why (prove that) the
diagonals of rhombus ABCD are in the ratio φ.
Clearly triangles ABK and KEM are similar, from
which follows that AK

BK = KM
EM . But KM = LE; so

AK
BK = LE

EM . But these lengths (AK, BK); (LE, EM)
are respectively half the lengths of the diagonals of
the rhombus and the sides of the rectangle; hence
the result follows from the property of the golden
rectangle ABCD.

The size of the angles of the golden rhombus in
Figure 2 can easily be determined using
trigonometry, and the task is left to the reader.
Another interesting property of both the golden
rectangle and golden rhombus in this
configuration is that tan ̸ EKF = tan ̸ BCD = 2.
One way of easily establishing this is by applying
the double angle tan formula, but this is also left
as an exercise to the reader to verify.

Since definitions in mathematics are to some
extent arbitrary, and there is no psychological
reason to prefer the one to the other from a visual,

aesthetic point of view (footnote2), we could
therefore choose either one of the aforementioned
possibilities as our definition. However, it seems
that a better argument can be made for the second
definition of a ‘golden rhombus’, since it shows a
nice, direct connection with the golden rectangle.
Also note that the second definition can be stated
in either of the following equivalent forms: 1) a
quadrilateral with sides constructed tangential to
the circumcircle, and at the vertices, of a golden
rectangle as illustrated in Figure 2; or more simply
as 2) a rhombus with diagonals in the ratio of φ
(footnote3).

The case for the second definition is further
strengthened by the nice duality illustrated
between the golden rectangle and golden rhombus
in Figure 3, which shows their respective midpoint
quadrilaterals (generally called ‘Varignon
parallelograms’). Since the diagonals of the golden
rectangle are equal, it follows that its
corresponding Varignon parallelogram is a
rhombus, but since its diagonals are equal to the
sides of the golden rectangle, they are also in the
golden ratio, and therefore the rhombus is a
golden rhombus. Similarly, it follows that the
Varignon parallelogram of the golden rhombus is a
golden rectangle.

Constructively Defining a ‘Golden
Parallelogram’

Since the shape of a parallelogram with sides in the
ratio of phi is variable, it seemed natural from the
aforementioned to define a ‘golden parallelogram’
as a parallelogram ABCD with its sides and
diagonals in the ratio phi, e.g., AD

AB = BD
AC = φ as

shown in Figure 4. Experimentally dragging a
dynamically constructed general parallelogram
until its sides and diagonals were approximately in
the golden ratio gave a measurement for ̸ ABC of
approximately 60◦.

2It is often claimed that there is some inherent aesthetic preference to the golden ratio in art, architecture and nature. However, several
recent psychological studies on peoples’ preferred choices from a selection of differently shaped rectangles, triangles, etc., do not show any
clear preference for the golden ratio over other ratios (e.g., see Grossman et al, 2009; Stieger & Swami, 2015). Such a finding is hardly
surprising since it seems very unlikely that one could easily visually distinguish between a rectangle with sides in the golden ratio 1.618,
or say with sides in the ratio of 1.6, 1.55 or 1.65, or even from those with sides in the ratio 1.5 or 1.7.
3A later search on the internet revealed that on https://en.wikipedia.org/wiki/Golden_rhombus, a golden rhombus is indeed defined in
this way in terms of the ratio of its diagonals and not in terms of the ratio of its angles. A further case for the preferred choice of this
definition can be also made from the viewpoint that several polyhedra have as their faces, rhombi with their diagonals in the golden ratio.
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Figure 3. The Varignon parallelograms of a golden rectangle and golden rhombus

Figure 4. Golden parallelogram with sides and diagonals in the golden ratio

To prove this conjecture was not hard. Assuming
a = 1 in Figure 4, it follows from the cosine rule
that:

AC2 = 12 + φ2 − 2φ cos θ,

BD2 = 12 + φ2
+ 2φ cos θ.

But since BD
AC = φ is given, it follows that:

12 + φ2
+ 2φ cos θ

12 + φ2 − 2φ cos θ
= φ2

.

Solving this equation for cos θ and substituting
the value of φ gives:

cos θ =
φ4 − 1

2(φ + φ3
)
=

1
2
,

which yields θ = 60◦. So my experimentally
found conjecture was indeed true. Accordingly, a
golden parallelogram defined as a parallelogram
with both its sides and diagonals in the golden
ratio has ‘neat’ angles of 60◦ and 120◦, and it also
looks more or less visually pleasing. Equivalently,
and more conveniently, we could define the

golden parallelogram as a parallelogram with an
acute angle of 60◦ and sides in the golden ratio4 or
as a parallelogram with an acute angle of 60◦ and
diagonals in the golden ratio. That the remaining
property follows from these convenient, alternative
definitions is left to the interested reader to verify.

An appealing property of this golden
parallelogram, consistent with that of a golden
rectangle, is shown in the first two diagrams in
Figure 5, namely, that respectively cutting off a
rhombus at one end, or two equilateral triangles at
both ends, produces another golden parallelogram.
This is because in each case a parallelogram with
an acute angle of 60◦ is obtained, and letting
a = 1, we see that it has sides in the ratio 1

φ−1 ,
which is well known to equal φ.

In addition, constructing the Varignon
parallelogram determined by the midpoints of the
sides of any parallelogram as shown by the third
diagram in Figure 5, it is easy to see that the sides
and diagonals of the Varignon parallelogram will
be in the same ratio as those of the parent

4Somewhat later I found that Walser (2001, p. 45) had similarly defined a golden parallelogram as a parallelogram with an acute angle
of 60◦ and sides in the golden ratio.
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Figure 5. Construction of golden parallelograms by subdivision

Figure 6. Spirals related to the golden parallelogram

Figure 7. Alternative definitions for golden parallelogram and golden rhombus

parallelogram. Hence, the Varignon parallelogram
of a parallelogram will be a golden parallelogram if
and only if, the parent parallelogram is a golden
parallelogram.

Of further recreational interest is that the
subdividing processes of the first two diagrams in
Figure 5, can be continued iteratively as shown in
Figure 6, just like the golden rectangle, to produce
rather pleasant looking spirals.

As was the case with the rhombus, a ‘golden
parallelogram’ can also be constructively defined
differently in terms of what is called a ‘golden
triangle’, namely an isosceles triangle with an
angle of 36◦ and two angles of 72◦ each. (It is left
as an exercise to readers to verify that such a
triangle has one of its legs to the base in the ratio
φ). A golden parallelogram can therefore be
obtained differently from the aforementioned by a
half-turn around the midpoint of one of the legs

of the golden triangle to obtain a parallelogram
with sides in the ratio φ (see footnote5) as shown
in the first diagram in Figure 7.

Note that using a golden triangle we can also
constructively define a golden rhombus in a third
way as shown in the second diagram in Figure 7.
By simply reflecting a golden triangle around its
‘base’, we obtain a rhombus with its side to the
shorter diagonal in the golden ratio. Though this
‘golden rhombus’ may appear too flattened out to
be visually pleasing, it is of some mathematical
interest as it appears in regular pentagons, regular
decagons, and in combination with a regular
pentagon, can create a tiling of the plane. So this is
a case where visual aesthetics of a concept have to
be weighed up against its mathematical relevance.

In Part-II of this article, we will explore some
possible definitions for golden isosceles trapezia,
golden kites, as well as a golden hexagon.

5Loeb & Varney (1992, pp. 53-54) define a golden parallelogram as a parallelogram with an acute angle of 72˚ and its sides in the golden
ratio. They then proceed using the cosine rule to determine the diagonals of such a parallelogram to prove that the short diagonal is equal
to the longer side of the parallelogram and hence divides it into two golden triangles.
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Endnotes

1. This is not the common textbook definition. (The usual definition is: A parallelogram is a four-sided figure for which both pairs of
opposite sides are parallel to each other.) I want to emphasize that concepts can be defined differently and often more powerfully in
terms of symmetry. As argued in De Villiers (2011), it is more convenient defining quadrilaterals in terms of symmetry than the
standard textbook definitions. Reference: De Villiers, M. (2011). Simply Symmetric. Mathematics Teaching, May 2011, p34–36.

2. The Golden Ratio can be defined in different ways. The simplest one is: it is that positive number x for which x = 1 + 1/x;
equivalently, that positive number x for which x2 = x+ 1. The definition implies that x = (

√
5 + 1)/2, whose value is

approximately 1.618034. A rectangle whose length : width ratio is x : 1 is known as a golden rectangle. It has the feature that when
we remove the largest possible square from it (a 1 by 1 square), the rectangle that remains is again a golden rectangle.

3. The term Golden Rectangle has by now a standard meaning. However, terms like Golden Rhombus, Golden Parallelogram, Golden
Trapezium and Golden Kite have been defined in slightly different ways by different authors.
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