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With what relief a student uses the simple formula

‘Area of a triangle = 2

1 base × height’! Though

Heron’s formula for the area in terms of its three

sides has a pleasing symmetry convenient for memorization, it

often seems cumbersome in comparison. A look at how this for-
mula is derived will perhaps enable the student to remember

and appreciate the formula, not for this reason but for the sheer

elegance of the derivation.

The formula is well known: if the sides of the triangle are

a, b, c, and its semi-perimeter is s = 2

1 (a+b+c), then its area

∆ is given by

T = s s^ ^ – – a s h hb s^ – ch .

We present two proofs of the theorem. The first one is a con-
sequence of the theorem of Pythagoras, with lots of algebra

thrown in. It is striking to see how heavily the humble ‘differ-
ence of two squares’ factorization formula is used.

Heron’s Formula for Area of a Triangle

One Formula -

Two Derivations

Cleverly used algebra in an old familiar formula for the area of a triangle

in terms of its base and height enables the formula to be restated in terms

of the sides of the triangle. An account of the derivation.
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Proof based on the theorem

of Pythagoras

The proof has been described with reference to

Figure 1 (I) and Figure 1 (II). Given the sides a,b, c

of 3ABC, let the altitude AD have length h. The

area of 3ABC is 2

1 ah. To find h in terms of a,b, c

we use Pythagoras’s theorem. Let BD=x, DC=a−x.

(The notation does not imply that x must lie

between 0 and a. Indeed, if \B is obtuse then x<0,

and if \C is obtuse then x>a. See Figure 1 (II).

Please draw your own figure for the case when

x>a.) Then:

h2 +x2 =c

2

, h2 +(a–x)

2 =b2

.

Subtract the second equation from the first one:

2ax–a2 =c

2 –b2

, ∴ x= – . a

c a b

2

2 2 2 +

Since h2 +x2

= c

2

, this yields:

h c

a

c a b

2 – 2 2 – 2 2 2 2

= + c m

c

a

c a b

c

a

c a b

2 2 – – – 2 2 2 2 2 2

= # +

+

+ c m c m

2 – – , a

ac c a b

a

ac c a b

2 2

2 – 2 2 2 2 2 2

= # + + +

∴ 4a2

h2

= (2ac–c

2 –a2 +b2

) × (2ac+c

2 +a2 –b2

).

The area of the triangle is D = 2

1 ah, so 16D2

=

4a2

h2

, i.e. :

16D2

= (2ac–c

2 –a2 +b2

) × (2ac+c

2 +a2 –b2

).

= [b2 –(c–a)

2

] × [(c+a)

2 –b2

]

= (b–c+a)(b+c–a)(c+a+b)(c+a–b)

= (2s–2c)(2s–2a)(2s)(2s–2b),

∴∆2

= s(s–a)(s–b)(s–c),

therefore T = ^ ^ s a– – h h s b ^s c– h.

Another proof

We now present an entirely different proof. It is

based on a note written by R Nelsen (see refer-
ence (1)) and uses two well known results:

• If a b, , c are three acute angles with a sum of

90°, then

(1) tana tanb + tanb tanc + tanc tana = 1.

Nelsen gives a ‘proof without words’ but we

simply use the well known addition formula for

the tangent function. Since a + b and c have a

sum of 90° their tangents are reciprocals of one

another:

tan tan

1 a b c ^ h + =

But we also have:

– tan tan tan

tan tan

1 a b a b

a b + =

+ ^ h

– tan tan

tan tan

1 tan

1

` a b

a b

c

+ =

Fig 1: The figure as it looks when \B is acute, and when it is obtuse
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Cross-multiplying and transposing terms,

we get (1).

• If s is the semi-perimeter of a triangle, and r is

the radius of its incircle, then its area ∆ is given

by ∆=rs. The proof is given in Figure 2; it is

almost a proof without words!

Now we move to Figure 3 which is the same as

Figure 2 but with some extra labels. The two

lengths marked x are equal (“The tangents from

a point outside a circle to the circle have equal

length”), as are the two lengths marked y, and the

two lengths marked z; and also the two angles

marked a, the two angles marked b, and the two

angles marked c.

Consider the angles marked a b, , c:

a = \FAI = \EAI,

b = \DBI = \FBI,

c = \DCI = \ECI.

Since a + b + c = 90°, by (1) we have:

tana tanb + tanb tanc + tanc tana = 1.

But from Figure 3,

tan a = x

r , tan b = y

r , tan c = z

r .

Therefore we get, by substitution,

(2) , . xy

r

yz

r

zx

r

xyz

r x y z 1 1 2 2 2 2

+ + = `

+ + = ^ h

Now x+y+z = s (the semi-perimeter); and since

y+z = a, we have x = s–a. In the same way, y =

s–b and z = s–c. So result (2) may be rewritten as:

, s a s b s c

r s 1 – – –

2

= ^ ^h h^ h

i e. ., 1. s s a s b s c

r s

– – –

2 2

= ^ ^h h^ h

Since rs = D this yields:

D2

= s(s – a)(s – b)(s – c),

and we have obtained Heron's formula.

Fig 2: Proof of the area formula D = rs

Fig 3
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