
Azim Premji University At Right Angles, July 2018126

Pr
o

b
le

m
 C

o
rn

er

We are introduced to the concept of an even
number and an odd number in primary school or
even earlier. Any natural number divisible by 2 is

even; if it is not, it is odd. The definition is extended to
integers once we learn the arithmetic of negative whole
numbers. Then we make simple observations such as: the
sum of two even numbers is even, as is the sum of two odd
numbers, and sum of an even number and an odd number is
odd. Carrying on, we deduce that the sum of an even
number of even numbers or odd numbers is even, and so is
the sum of an odd number of even numbers, whereas the
sum of an odd number of odd numbers is odd. This article
aims at discussing some problems where these simple
observations come into play.

Problem 1. At a party, each guest shakes hands with a certain
number of guests. Is it true that the number of guests who
have shaken hands with an odd number of guests is even? (It
is taken for granted that each handshake is between precisely
two persons; there are no handshakes featuring three or more
hands!)

Solution to Problem 1. Let there be N guests present in the
party. Suppose they are numbered G1,G2, . . . ,GN. Let hk,
1 ≤ k ≤ N, be the number of handshakes performed by the
guest Gk. Let

T = h1 + h2 + · · ·+ hN.

1

Keywords: Odd, even, parity

The Odd-Even 
Tale
PRITHWIJIT DE



127Azim Premji University At Right Angles, July 2018

First we show that T is even. Here is a nice way of proving it. Imagine that there is a counter placed in the
party hall and initially it is set at zero. Whenever there is a handshake, the counter counts the number of
hands involved in it. Thus at every handshake, the count on the counter increases by 2. Since initially the
count is an even number (0 is even), the final count has to be an even number. Therefore, T is even.
Without loss of generality, if we assume that h1, h2, . . . , hM, M < N, are odd then it follows that

h1 + h2 + . . .+ hM = T− (hM+1 + · · ·+ hN)

is even, which shows that M must be even, for if M is odd, then on the left side we would have an odd
number of odd numbers which necessarily add up to an odd number; on the other hand, all the quantities
on the right side are even, consequently the right side is even. Hence M is even.

Problem 2. The numbers 1 through 10 are written in a row. Can the signs ‘+’ and ‘−’ be placed between
them, so that the value of the resulting expression is 0?

Solution to Problem 2. We know that

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55.

If some of the ‘+’ signs are replaced by ‘−’ then the sum changes by an even number. (More specifically,
the sum changes by twice the sum of the numbers thus altered, i.e., it changes by an even number.) Since
the original sum is odd, no matter how many sign changes are made, the resulting sum will remain an odd
number. Therefore it will not be possible to reach zero at any stage.

Problem 3. The numbers 1, 2, 3, . . . , 2016, 2017 are written on a blackboard. We decide to erase from
the board any two numbers, and replace them with their positive difference. This process is continued till
a single number remains on the blackboard. Can this number be zero?

Solution to Problem 3. Consider what happens at each stage to the sum of all the numbers on the
blackboard before and after the number replacement. At any stage, let the numbers erased be a and b with
a > b. Then the sum of all the numbers changes by

(a+ b)− (a− b) = 2b,

an even number. Hence, at each stage, the sum of the numbers changes by an even number. Therefore the
parity of the final sum and the initial sum will be the same. As the sum 1 + 2 + · · ·+ 2016 + 2017 is
odd, the final number written on the board is odd too, and hence cannot be 0.

Problem 4. Can one form a ‘magic square’ with the first 36 prime numbers?

For the benefit of the reader, a “magic square” here means a 6 × 6 array of boxes, with a number in each
box, and such that the sum of the numbers along any row, column, or diagonal is constant. The answer is
NO. Why? Perhaps the reader would like to figure it out.

Problem 5. Let a1, a2, . . . , a2017 be a permutation of 1, 2, . . . , 2017 such that ak ̸= k for every
k ∈ {1, 2, . . . , 2017}. Is the product

(a1 − 1) (a2 − 2) · · · (a2017 − 2017)

even or odd?

Solution to Problem 5. There is an odd number of terms in the product. Suppose the product is odd.
What can we say about each term? Each term must be odd. Thus for every k with 1 ≤ k ≤ 2017, ak − k
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is odd. Now comes the crucial observation. It is motivated by the fact that a1, a2, . . . , a2017 is a
permutation of 1, 2, . . . , 2017, and a permutation keeps the sum of the numbers unchanged. Therefore

a1 + a2 + · · ·+ a2017 = 1 + 2 + · · ·+ 2017,

and this can be re-written as

(a1 − 1) + (a2 − 2) + · · ·+ (a2017 − 2017) = 0.

Note that the right side of this equality is even whereas each summand on the left side is odd, by
assumption. But this cannot happen, because an odd number of odd numbers cannot add up to an even
number. Thus we arrive at a contradiction and it arose from our assumption that the product is odd.
Therefore the product must be even.

Note that the proposition is not true if the number of numbers we start with is even. For instance, if we
had 2018 numbers, the claim could not have been made; in fact, it would have been false. To prove the
falsity of the claim for an even number of numbers, we have to exhibit a permutation of this set of
numbers for which the product defined in the statement of the problem is odd. We let the reader find such
a permutation.

Problem 6. Let a, b and c be odd integers. Prove that the polynomial ax2 + bx+ c does not have a rational
root.

Solution to Problem 6. This is a very nice problem. We will solve it in two different ways. There is a
reason for doing so, but we will not divulge it right now and rather let the suspense hang in the air. The
first method is the textbook method: extract the roots and analyse them. The roots are

x1 =
−b+

√
b2 − 4ac

2a
, x2 =

−b−
√
b2 − 4ac

2a
.

Assume that b2 − 4ac ≥ 0, so that the roots are real. If we want the roots to be rational, then
√
b2 − 4ac

must be a positive integer. Let there exist a positive integer x such that
√
b2 − 4ac = x.

Observe that x is odd, since b2 is odd and 4ac is even. Upon simplification, we get

ac =
(
b− x

2

)(
b+ x

2

)
.

Observe that both b− x and b+ x are even numbers. Thus b−x
2 and b+x

2 are integers. In fact, they are both
odd integers, because ac is odd. But then b = b−x

2 + b+x
2 is even, contrary to the stated fact that it is odd.

This contradiction shows that such a positive integer x does not exist.

Now we are ready for the second method. This is also a proof by contradiction, but it does not require
extraction of roots. Here is how it runs. Suppose that the given equation has a rational root x =

p
q
, where

p and q are integers, q ̸= 0 and the greatest common divisor of p and q is 1, i.e., p and q are coprime. Thus

a
(
p
q

)2

+ b
(
p
q

)
+ c = 0.

Clearing the denominators leads to
ap2 + bpq+ cq2 = 0.

Since p divides ap2 as well as bpq, it must be that p divides cq2. Similarly, q divides ap2. But since p and q
are coprime, we conclude that p divides c and q divides a. Thus p and q are odd and so is ap2 + bpq+ cq2.
This contradicts the above statement that ap2 + bpq+ cq2 = 0, an even number.
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Now the time has come to reveal the reason for discussing the second method. If we study the proof
closely, we see that the vital part of the argument is to prove that p and q are odd. Once this is done, the
rest of the proof relies on the fact that the sum of an odd number of odd numbers cannot be even.
Nowhere did we use the fact that we are dealing with a quadratic polynomial. All that mattered in the end
was that an odd number of terms were present in the expression. This opens up the possibility of
generalising the proposition to polynomials of arbitrary degree with odd coefficients and having an odd
number of terms. To put it in precise mathematical terms, pick an even number k and consider a finite
sequence of natural numbers n0 < n1 < · · · < nk and odd integers an0 , an1 , · · · , ank . Construct the
polynomial

ankx
nk + ank−1x

nk−1 + · · ·+ an1x
n1 + an0 .

This polynomial has k+ 1 terms, which is odd because k is even. This polynomial does not have a rational
root. Why? Let us emulate the argument that we used for the quadratic. It is evident that zero is not a root
of the polynomial. If possible, let there be a non-zero rational root x =

p
q
, where p and q are coprime

integers and q ̸= 0. Then

ank

(
p
q

)nk
+ ank−1

(
p
q

)nk−1

+ · · ·+ an1

(
p
q

)n1

+ an0 = 0.

Multiplying both sides of the equation by qnk leads to

ankp
nk + ank−1p

nk−1qnk−nk−1 + · · ·+ an1p
n1qnk−n1 + an0q

nk = 0.

As before, we observe that p divides an0 and q divides ank , hence both are odd. Thus every term on the left
hand side of the preceding equation is odd and there are an odd number of them. Therefore the sum of
these terms cannot be zero. This contradiction shows that the polynomial cannot have a rational root.

Note that we did not explicitly extract the roots of the polynomial equation in order to carry out the
analysis and complete the argument. The reader may be aware that finding roots of a general polynomial is
a herculean task. The second method not only overcomes this difficulty, it also reduces the complexity of
the problem to a great extent.
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