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Two of the fun problems in this issue deal with

cryptarithms, so we first explain what they are and

how they are to be approached.

A cryptarithm is a disguised arithmetic problem,

in which digits have been replaced by letters —

each digit being mapped to a different letter.

(This implies that two different letters cannot

represent the same digit.) The problem, of course,

is to ‘decode’ the mapping — i.e., find which digit

stands for which letter.

For example, consider the following ‘long multipli-
cation’ cryptarithm:

A B

C A

× 4

To solve this we argue as follows. Since 4 times

the two-digit number AB yields another two-digit

number, the tens digit of AB cannot exceed 2.

So A=0, 1 or 2. But since A is the tens digit of AB,

we cannot have A=0 (else, AB would be a

one-digit number); hence A=1 or 2.

Again, since 4 times any number is an even num-
ber, the units digit of CA is even; i.e., A is even.

Combining this what we got earlier, we find

that A=2.

Now we ask: What can B be, so that the units digit

of 4×B has units digit 2? Clearly it must be 3 or 8

(because 4×3=12 and 4×8=32).

But if B=8 then AB=28, and 4×28=112 is a three-
digit number; too large.

So B=3, and the answer is: 23×4=92. Thus: A=2,

B=3, C=9.

Cryptarithms do not always come this easy! But

they generally yield to persistence and a long,

careful examination of the underlying arithmetic.

And, of course, there is no harm in doing a bit of

‘trial and error’! Once one solves a cryptarithm

there is a great feeling of satisfaction, and one

finds that one has learnt some useful mathematics

in the process.

Sometimes we come across a cryptarithm with

more than one solution. People who design cryp-
tarithms consider this to be a ‘design flaw’. They

maintain that a really well designed cryptarithm

has a unique solution, and it should be possible to

find it using ‘pure’ arithmetical reasoning, possibly

with a small component of trial.

Problem I-1-F.1

Solve this cryptarithm:

ABCD × 4 = DCBA.

Thus, ABCD is a four digit number whose digits

come in reverse order when the number is

multiplied by 4.

Problem I-1-F.2

Solve this cryptarithm: (TWO)

2

= THREE.

Problem I-1-F.3

The numbers 1, 2, 3, . . . , 99, 100, 101, . . . ,

999998, 999999 are written in a line. In this enor-
mously long string of numbers, what is the total

number of 1s?

2. Problems For Solution - What is a cryptarithm?
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The problem we take up for discussion is the fol-
lowing; it was asked in the American Invitational

Mathematics Examination (AIME), which is one of

the examinations taken by students aspiring to do

the national level olympiad of USA:

Find the least positive integer n such that every

digit of 15n is either 0 or 8.

Such questions look a bit baffling at first sight, but

if one looks carefully, then some facts emerge. Let

us try to solve to this problem.

A number whose digits are all 0s and 8s is clearly

divisible by 8; hence 15n is divisible by 8. But

15=3×5 and thus has no factors in common with

8 (we say that 8 and 15 are ‘coprime’); hence n

itself is divisible by 8. Let m=n/8. Then m has the

property that every digit of 15m is 0 or 1. So the

problem to solve is:

Find the least positive integer m such that every

digit of 15m is 0 or 1.

Once we get this least m, we multiply by 8 to get

the required n. So let us look for the least such m.

Since 15m is a multiple of 3, the test for

divisibility by 3 must apply. Thus, the sum of the

digits of 15m must be a multiple of 3. Since 0 does

not contribute to the sum of the digits it follows

that the number of 1s must be a mutiple of 3. That

is, there must be three 1s, or six 1s, or nine 1s, and

so on. The least positive multiple of 3 which has

no digit outside the set. (0, 1) is clearly the

number 111. Since we want the number to be

divisible by 5 as well, we simply append a 0 at the

end; we get 1110. Hence: 1110 is the least multiple

of 15 which has the stated property.

Since 1110 =15 × 74, it follows that m=74.

Hence the required value of n is 8 × 74=592.

(Please check for yourself that 592 × 15=8880.)

Middle School Problem Editor : R Athmaraman

1. An Unusual Multiple of 15

2. Problems for Solution

Problem I-1-M.1

Find: (a) Four examples of right triangles in

which the lengths of the longer leg and

the hypotenuse are consecutive natural

numbers.

(b) Two examples of right triangles in which

the lengths of the legs are consecutive

natural numbers.

(c) Two differently shaped rectangles having

integer sides and a diagonal of length 25.

(d) Two PPTs free from prime numbers.

Problem I-1-M.2

Let a right triangle have legs a and b and hypote-
nuse c, where a, b, c are integers. Is it possible that

among the numbers a, b, c:

1. All three are even?

2. Exactly two of them are even?

3. Exactly one of them is even?

4. None of them is even?

Either give an example for each or prove why the

statement is false.

Problem I-1-M.3

Let a right triangle have legs a and b and hypote-
nuse c, where a, b, c are integers. Is it possible that

among the numbers a, b, c:

1. All three are multiples of 3?

2. Exactly two of them are multiples of 3?

3. Exactly one of them is a multiple of 3?

4. None of them is a multiple of 3?

Either give an example for each or prove why the

statement is false.

Problem I-1-M.4

How many PPTs are there in which one of the

numbers in the PPT is 60?
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Problem I-1-M.5

Take any two fractions whose product is 2.

Add 2 to each fraction.

Multiply each of them by the LCM of the denomi-
nators of the fractions. You now get two natural

numbers. Show that they are the legs of an integer

sided right triangle. (Example: Take the fractions

2

5 and 5

4 ; their product is 2. Adding 2 to each we

get 2

9 and 5

14 . Multiplying by 10 which is the LCM

of 2 and 5, we get 45 and 28. Now observe that

452

+ 282

= 532

.)

Problem I-1-M.6

The medians of a right triangle drawn from the

vertices of the acute angles have lengths 5 and

14 . What is the length of the hypotenuse?

Problem I-1-M.7

Let ABCD be a square of side 1. Let P and Q be the

midpoints of sides AB and BC respectively. Join PC,

PD and DQ. Let PC and DQ meet at R. What type

of triangle is 3PRD? What are the lengths of the

sides of this triangle?

Problem I-1-M.8

Find all right triangles with integer sides such that

their perimeter and area are numerically equal.

Problem I-1-M.9

If a and b are the legs of a right triangle, show that

a b a b 2 a b 2 2 2 2 + + 1 # ^ h +

Hint. A suitable diagram with a right triangle

inscribed in a square may reveal the answer.
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Senior School Problem Editors : Prithwijit De & Shailesh Shirali

1. A problem in number theory

We start this column with a discussion of the following problem which is adapted from one

asked in the first Canadian Mathematical Olympiad (1969):

Find all integer solutions of the equation a2 + b2

= 8c + 6.

At first sight it looks rather daunting, doesn’t it? — a single equation with three unknowns, and

we are asked to find all its integer solutions! But as we shall see, it isn’t as bad as it looks.

Note the expression on the right side: 8c + 6, eight times some integer plus six. That means it

leaves remainder 6 when divided by 8. Hmmm ...; so we want pairs of integers such that their

sum of squares leaves remainder 6 when divided by 8. Put this way, it invites us to first exam-
ine what kinds of remainders are left when squared numbers are divided by 8. We build the fol-
lowing table. We have used a shortform in the table: ‘Rem’ means ‘remainder’, so ‘Rem (n2 ÷8)’

means ‘the remainder when n2

is divided by 8’.

Please complete the table on your own and study the data. What do you see?

Here are some striking patterns we see (and there may be more such patterns):

1. Every odd square leaves remainder 1 when divided by 8.

n 1 2 3 4 5 6 7 8 9 10 ...

n2 1 4 9 ... ... ... ... ... ... ... ...

Rem (n2

÷ 8) 1 4 1 ... ... ... ... ... ... ... ...
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