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Remark.We did not bother to find x and y individually, as we had only been asked to find x : y. But if we
need these as well, then:

x = 2
(
1
2
12 × π

2
− 1

2
12 × sin

π
2

)
=

π
2
− 1,

and of course, y has the same value. �

Generalization
Now suppose that �POQ = t, where 0 ≤ t ≤ π; see Figure 2. As earlier, let z denote the areas of the
semi-circles minus the blue region. Let A and B denote the centres of the two circles, and R the point of
intersection of the two small circles other than O (the center of the large circle). Since OARB is a rhombus,
BR ∥ OA, hence �PBR = t, hence �OBR = π − t. Hence:

x = 2 (Area of sector OBR− Area of△OBR)

= 2
(
12 · (π − t)

2
− 12 · sin(π − t)

2

)
= π − t− sin t.

Again, we have:

x+ z =
1
2
12 × π =

π
2
, x+ 2z+ y =

1
2
22 × t = 2t.

Hence by subtraction y− x = 2t− π, and therefore y = x+ 2t− π. Hence the desired ratio x : y is:
x
y
=

π − t− sin t
t− sin t

.

For the particular value t = π/2 we have x : y = (π/2− 1) : (π/2− 1) = 1 : 1, as earlier. �

Note. Reader Tejash Patel of Gujarat sent in correct solutions to both parts of the problem.
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Shown in Figure 1 is a portion of Figure 1 in the original
article (July 2016 issue): two semi-circles centred at A and
B, with radii 1 unit each, and a quarter-circle OPQ, with

radius 2 units. The portions of the semi-circles minus the blue
region (with area x) have area z each. (They obviously have equal
area.) Clearly:

x+ z =
1
2
π × 12 =

π
2
, x+ 2z+ y =

1
4
π × 22 = π,

hence x+ 2z+ y = 2(x+ z), therefore x+ y = 2x, therefore
x = y. Hence x : y = 1 : 1. �
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