






Page
1
/4









































Loading…

Page 1 of 4
At Right Angles | Vol. 2, No. 3, November 2013 37

in the classroom

Formal proof is one of the striking features of mathematics. You

do not find this feature in any of the sciences. What you do meet in

the sciences would be more accurately described as ‘verification’.

You may for example perform an experiment in the laboratory to

verify the formula t = for the time period of oscillation of

a pendulum. What do you do? You set up the apparatus and take a

lot of readings, then draw a graph or two and check how close are

your results to the prediction. At the end you say, ‘The formula has

been verified to be true within experimental error’ or something

like that. This is done routinely in the sciences. It is important to see

that this is not the same as proof in mathematics.

In a proof what you are attempting to do is to build a logical bridge

from one set of statements (or suppositions) to another statement,

using intermediate steps that are small and of a kind which no

one would dispute. The jump from the initial statement to the

final one may seem large, but when broken down to a sequence of

small steps it does not appear so. The logic used in mathematics is
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actually no different from that used in ordinary

life (though it may seem different, especially when

expressed using symbols and formal mathematical

language); indeed, daily life is the source of all

logical methods. You could say, in fact, that much

of mathematical logic is plain and simple ‘kitchen

logic’!

It is believed by many that at the school level proof

is encountered mainly in the realm of geometry;

and that geometry is the only platform available

for teaching proof. Both these statements are false.

Proof lies at the heart of mathematics, in every

single branch. At the school level, one resource

that is heavily underutilized with regard to the

teaching of proof is Number Patterns and Algebra.

In this column we shall demonstrate many

principles of proof using themes from number

theory (which at this level is mainly applied

algebra). Of course, we shall consider themes from

geometry too.

It is equally a fallacy to imagine that proof can be

introduced only when students are in their upper

primary classes or in high school. Formal written

proof, yes; symbolic proof, yes; but informal and

clearly articulated, verbalized reasoning can and

should be introduced much earlier — indeed, in

the lower primary years. We shall elaborate on

this theme in subsequent columns.

An example from algebra

In the first ‘episode’ of this serial we study an

example from number theory:

Show that the square of any odd number leaves

remainder 1 when divided by 8.

We experiment with some numbers to get a sense

of the task: 12 = 0 × 8 + 1, 32 = 9 = 1 × 8 + 1, 52 = 25

= 3 × 8 + 1, 72

= 49 = 6 × 8 + 1, 92

= 81 = 10 × 8 +

1, 112

= 121 = 15 × 8 + 1, 132

= 169 = 21 × 8 + 1, .

. . . We see that the claim has worked for the odd

squares from 12

till 132

. Is this enough evidence to

conclude that the pattern will always be true?

Not quite! As we said earlier, empirical evidence

is suggestive of the truth of a proposition — but

that’s all. In number theory there are numerous

instances of statements which fail despite the

evidence in their favour being very strong. A well

known example of this is Euler’s prime-generating

function n2 + n + 41, which yields prime values for

40 consecutive values of n (namely, n = 0, 1, 2, 3, . .

., 39; we get the primes 41, 43, 47, . . . , 1447, 1523,

1601), and just as we are beginning to be certain

that the expression will always yield a prime, the

formula disappoints us: the pattern breaks, with

n = 40 yielding a composite number. (It is easy to

check that n = 40 does yield a composite number,

for 402

+ 40 + 41 is clearly a multiple of 41.

Indeed, it equals 412

.)

So if we want actual proof then we have to

produce something that will stand up in the

‘mathematical court’ before the toughest lawyer,

who will be looking for ways to dash your

arguments to bits. Here are some approaches

which should satisfy such a lawyer.

First proof. What is an odd number? Clearly, one

that leaves remainder 1 when it is divided by 2.

This means that an odd number A is of the form

2 × an integer + 1, i.e., A = 2n + 1 where n is a

positive integer. Let us see what happens when

we square this expression:

A2

= (2n + 1)2

= 4n2

+ 4n + 1.

We see readily that A2

is of the form 4 × (some

integer)+1. That is, A2

leaves remainder 1 when

divided by 4. While this comes close, it is not good

enough: we need division by 8, not by 4. What do

we do now?

Let’s look more closely. We see that

A2

= 4n (n + 1) + 1. If only we can show that

n (n + 1) is an even number, then our task will be

done, for the number 4n (n + 1) will then be twice

a multiple of 4, and therefore a multiple of 8.

But n (n + 1) is even; for, it is the product of two

consecutive numbers, of which one clearly must

be even. So our job is done!

Second proof. This approach may appear a bit

strange at first but is perfectly valid. The idea

comes from the fact that the problem has to do

with division by 8, so it seems natural to check if

there is some underlying pattern which repeats

each time n increases by 8. So we consider the

expression: (n + 8)2

− n2

. We have:
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(n + 8)2

− n2

= (n2

+ 16n + 64) − n2

= 16n + 64 = 8

(2n + 8).

We see clearly that the last quantity is a multiple

of 8. So when n increases by 8, the remainder in the

division n2 ÷ 8 stays unchanged.

It follows that if the given statement is true for

the odd squares 12

, 32

, 52

and 72

, then it will

necessarily be true for 92

, 112

, 132

and 152

; and

therefore it will necessarily be true for 172

, 192

,

212

and 232

; and so on, indefinitely. But the

statement is indeed true for 12

, 32

, 52

and 72

, as is

easily checked. Therefore it is true for the square

of every odd number!

Remark. This proof can be hugely improved

once we notice that we do not need to consider

integers separated by a gap of 8. In fact, since we

are studying the squares only of odd numbers, a

gap of 2 is good enough! For, if we consider any

two consecutive odd numbers, say 2n − 1 and 2n +

1, the difference between their squares is

(2n + 1)2

− (2n − 1)2

= (2n − 1 + 2n + 1) × 2 = 4n ×

2 = 8n,

which is a multiple of 8. So if the hypothesis is

true for the first odd square (namely: 12

), which it

clearly is, then it will be true for every subsequent

odd square. Hence proved!

Third proof. Just for variety we give a third proof.

It is based on the fact that the sum of the first n

odd numbers is n2

. For example, 1 + 3 = 4 = 22

and

1 + 3 + 5 = 9 = 32

. So to show that (2n − 1)2

is 1

more than a multiple of 8, we must show that the

sum of the first 2n − 1 odd numbers is 1 more than

a multiple of 8.

Now we observe the following simple pattern in

the sequence of odd numbers: the sums 3 + 5, 7

+ 9, 11 + 13, 15 + 17, . . . are all multiples of 8. It is

easy to see why this must be so; for, 3 + 5 = 8, and

in advancing from 3 + 5 to 7 + 9 we increase the

sum by 4 + 4 = 8. Likewise, in advancing from 7

+ 9 to 11 + 13 we increase the sum by 4 + 4 = 8.

As the sums increase by 8 each time, and we start

off at a multiple of 8, the sum will always be a

multiple of 8.

The statement now proves itself; for, in the sum

of the first 2n − 1 odd numbers, we can pair the

last two odd numbers, then the two odd numbers

just before that pair, and so on, down to {3, 5}.

The sum of each pair is a multiple of 8, and the

remaining number, 1, ensures that the sum is 1

more than amultiple of 8. The following depicts a

typical situation:

92

= 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17.

Closing remarks. We quote Professor Gila Hanna, from [1]:

The recognition that proofs can convey new mathematical techniques

effectively, and thus should be treated as important bearers of mathematical

knowledge, is a fertile point of view that mathematics educators seem to

have overlooked to a large extent. Adopting this approach to proof in the

classroom does not challenge in any way the accepted “Euclidean” definition

of a mathematical proof (as a finite sequence of formulae in a given system,

where each formula of the sequence is either an axiom of the system or is

derived from preceding formulae by rules of inference of the system), nor

does it challenge the teaching of proof as a Euclidean derivation. It is rather

an acknowledgement that the teaching of proof has the potential to further

students’ mathematical knowledge in other ways. It offers an opportunity

to make new connections between the process of proving and mathematical

techniques, and also gives us an additional reason for keeping proof in the

mathematics curriculum.
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