An Eye on Eyeball

Euclidean Geometry is fascinating. It has captured our imagination for centuries. Many beautiful theorems have been discovered and proved, and myriad mind-boggling problems have been posed and solved, yet we haven't got tired of it. To the creative mind, geometry is a source of immense pleasure and contentment. We look for some more in a little-known result in plane geometry called "The Eyeball Theorem" and uncover some of its geometrical features.

The Eyeball Theorem

Figure 1

Keywords: Geometry, circles, tangents, chords, angles, concyclic

Consider two non-overlapping circles ω_{1} and ω_{2} in the plane; neither circle is contained in the other. Let O_{1} and O_{2} be their respective centres. Draw tangents to ω_{2} from O_{1} and to ω_{1} from O_{2}. Let the tangents to ω_{2} intersect ω_{1} at A and B. Let the tangents to ω_{1} intersect ω_{2} at C and D. The Eyeball Theorem now states that $A B=C D$. (See Figure 1.)

There are several ways to prove the assertion. To start with, let us mark a few more points in the configuration. Let X and Y be the respective points of intersection of $O_{1} O_{2}$ with $A B$ and $C D$; see Figure 2. Let P_{1} and P_{2} be the points of contact of the tangents from O_{1} to ω_{2}, and let Q_{1} and Q_{2} be the points of contact of the tangents from O_{2} to ω_{1}.

Figure 2
Here is a simple argument which shows that $A B=C D$. Let r_{1} and r_{2} be the radii of ω_{1} and ω_{2} respectively. Observe that line $O_{1} O_{2}$ is an axis of symmetry of the configuration. Therefore $A B=2 A X$ and $C D=2 C Y$. The triangles $O_{1} X A$ and $O_{1} P_{1} O_{2}$ are similar. Hence:

$$
\begin{equation*}
\frac{A X}{P_{1} O_{2}}=\frac{O_{1} A}{O_{1} O_{2}}, \quad \therefore A B=2 A X=\frac{2 r_{1} r_{2}}{O_{1} O_{2}} . \tag{1}
\end{equation*}
$$

A similar argument leads to

$$
\begin{equation*}
C D=\frac{2 r_{1} r_{2}}{O_{1} O_{2}}, \tag{2}
\end{equation*}
$$

and we see that $A B=C D$.
If the circles touch each other externally, then

$$
\begin{equation*}
A B=C D=\frac{2 r_{1} r_{2}}{r_{1}+r_{2}}, \tag{3}
\end{equation*}
$$

which is the harmonic mean of the radii of the two circles.
This configuration abounds in sets of four or more concyclic points. Let us find as many such sets as we can. The missing ones may be reported by perceptive readers. As the figure is symmetric about $O_{1} O_{2}$, it suffices to look for concyclic sets on one side of $O_{1} O_{2}$, say on the same side of the line as A. See Figure 3, which is the same as Figure 2; we have reproduced it only for the readers' convenience.

Observe that $\measuredangle O_{1} Q_{1} O_{2}=\measuredangle O_{1} P_{1} O_{2}=90^{\circ}$, which shows that $O_{1} O_{2}$ subtends the same angle at two points P_{1} and Q_{1} on the same side of it. Therefore the four points O_{1}, O_{2}, P_{1} and Q_{1} are concyclic.

Figure 3

Moreover, $O_{1} O_{2}$ is a diameter of the circle. By symmetry, P_{2} and Q_{2} lie on the same circle. Thus we have six points on the same circle. Call this circle Ω. We have more in store. Observe that

$$
\begin{equation*}
\measuredangle A Q_{1} O_{2}=\frac{1}{2} \measuredangle A O_{1} Q_{1}=\frac{1}{2} \measuredangle C O_{2} P_{1}=\measuredangle C P_{1} O_{1}, \tag{4}
\end{equation*}
$$

showing that the points A, Q_{1}, P_{1}, C are concyclic. By symmetry the same is true for the points B, Q_{2}, P_{2}, D.

Quadrilateral $A B D C$ is a rectangle because $A B=C D$ and segments $A B$ and $C D$ have a common perpendicular bisector, namely, line $O_{1} O_{2}$. Therefore, points A, B, D, C are concyclic. The reader may easily deduce that quadrilaterals $A P_{1} P_{2} B$ and $C Q_{1} Q_{2} D$ are isosceles trapezoids and therefore their vertices form concyclic sets of points.
The centres of the circles $\omega 1, \omega 2$ and $\left(O_{1} Q_{1} P_{1} O_{2} P_{2} Q_{2}\right)$ all lie on $O_{1} O_{2}$; so also for the circles $\left(A P_{1} P_{2} B\right)$ and $\left(C Q_{1} Q_{2} D\right)$. What can be said about the centre of the circle containing the points A, Q_{1}, P_{1}, C ? Let us investigate. If O_{3} is the centre of this circle, then observe that it is the point of intersection of the perpendicular bisector of $A Q_{1}$ and that of $C P_{1}$. But the perpendicular bisector of $A Q_{1}$ passes through O_{1} and that of $C P_{1}$ passes through O_{2}. Now

$$
\begin{equation*}
\measuredangle O_{3} O_{1} O_{2}=\measuredangle O_{3} O_{1} P_{1}+\measuredangle P_{1} O_{1} O_{2}=\frac{1}{2} \measuredangle Q_{1} O_{1} P_{1}+\measuredangle P_{1} O_{1} O_{2}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\measuredangle O_{3} O_{2} O_{1}=\measuredangle O_{3} O_{2} Q_{1}+\measuredangle Q_{1} O_{2} O_{1}=\frac{1}{2} \measuredangle P_{1} O_{2} Q_{1}+\measuredangle Q_{1} O_{2} O_{1} . \tag{6}
\end{equation*}
$$

But we also have

$$
\begin{equation*}
\measuredangle Q_{1} O_{1} P_{1}+\measuredangle P_{1} O_{1} O_{2}+\measuredangle Q_{1} O_{2} O_{1}=90^{\circ}, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\measuredangle Q_{1} O_{2} P_{1}+\measuredangle Q_{1} O_{2} O_{1}+\measuredangle P_{1} O_{1} O_{2}=90^{\circ} . \tag{8}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\measuredangle O_{3} O_{1} O_{2}+\measuredangle O_{3} O_{2} O_{1}=90^{\circ} . \tag{9}
\end{equation*}
$$

Therefore $\measuredangle O_{1} O_{3} O_{2}=90^{\circ}$ and so O_{3} lies on Ω. By symmetry, the centre of the circle containing B, Q_{2}, P_{2}, D also lies on Ω. (See Figure 4.)

Figure 4

So we have found eight points on a circle. That's exciting, isn't it? Here is something even more exciting. Let O_{4} be the centre of the circle passing through B, Q_{2}, P_{2}, D. The line $O_{3} O_{4}$ passes through the centre of the circle passing through A, B, C, D. How does one prove it? We leave that as an exercise for you!

References

1. The Eyeball Theorem. http://nrich.maths.org/1935
2. The Eyeball Theorem. http://www.cut-the-knot.org/Curriculum/Geometry/Eyeball.shtml

PRITHWIJIT DE is a member of the Mathematical Olympiad Cell at Homi Bhabha Centre for Science Education (HBCSE), TIFR. He loves to read and write popular articles in mathematics as much as he enjoys mathematical problem solving. His other interests include puzzles, cricket, reading and music. He may be contacted at de.prithwijit@gmail.com.

