Counting Triangles

In this article, I study the problem of counting the number of triangles formed in a triangle if n segments are drawn from one vertex to its opposite side, and h segments are drawn from another vertex to its opposite side. This kind of counting problem is often seen in puzzle collections; e.g.: "Count the number of triangles visible in Figure 1". Making a manual count for such a problem is tedious; also, it is easy to make an error in the count. We need a more analytic and systematic procedure.

Figure 1

Keywords: triangles, counting, combinations

Figure 2

Step 0: Segments drawn from just one vertex

We first solve the sub-problem in which segments are drawn from just one vertex. In Figure 2 (a), lines $A D, A E$ have been drawn from vertex A to points D, E on $B C$. The number of triangles thus formed can be manually counted; it comes to be 6 . Now draw n segments from A to n points on $B C$, as in Figure 2 (b); here $n=5$. If we take any two segments from the set of $n+2$ segments which emanate from vertex A (i.e., the n segments along with $A B$ and $A C$), we get precisely one triangle (the base lying on $B C$). So the number of triangles will be equal to the number of different ways of choosing 2 segments from $n+2$ segments; this is $\binom{n+2}{2}$. Hence, for n segments drawn from a single vertex, the number of triangles is $(n+2)(n+1) / 2$.

Step 1: Back to the original problem

Now I return to the main problem. I have divided the problem into two cases, depending on whether the number of segments emanating from the two vertices are equal or unequal.
Case 1: Same number of segments drawn from the two vertices, $\mathbf{n}=\mathbf{h}$. Consider for example $\triangle A B C$ (Figure 3), in which two segments each have been drawn from vertices B and C to the opposite sides. We first count all triangles which have B as a vertex. Triangle $C B E$ contains $\binom{4}{2}=6$ such triangles; likewise for triangles $C B D$ and $C B A$. Therefore there are $6+6+6=18$ triangles which have B as a vertex. The computation may also be written as $\binom{4}{2} \times\binom{ 3}{1}=6 \times 3=18$.
The triangles which do not have B as a vertex all lie inside $\triangle A C G$, and they all have C as a vertex. To count these, note that they can be generated by choosing any two segments out of the segments $C A, C F, C G$ and choosing one segment from the segments $B A, B D, B E$. So we get $\binom{3}{2} \times\binom{ 3}{1}=3 \times 3=9$ triangles.

Figure 3

So, the total number of triangles is $18+9=27$.
Some of you may observe that $27=3^{3}$ which may be written as $(2+1)^{3}$, and guess that this is not pure coincidence!

Now we will try to prove that if n segments are drawn from both vertices, there will be $(n+1)^{3}$ triangles.
The proof of this general claim runs on exactly the same lines as above. Thus, in place of the quantity $\binom{4}{2} \times\binom{ 3}{1}$, we have the term

$$
\binom{n+2}{2} \times\binom{ n+1}{1}
$$

and in place of the quantity $\binom{3}{2} \times\binom{ 3}{1}$, we have the term

$$
\binom{n+1}{2} \times\binom{ n+1}{1} .
$$

Hence the total number of triangles in the configuration is

$$
\begin{aligned}
\binom{n+2}{2} \times\binom{ n+1}{1}+\binom{n+1}{2} \times\binom{ n+1}{1} & =\frac{(n+2)(n+1)^{2}}{2}+\frac{(n+1)^{2} n}{2} \\
& =\frac{(n+1)^{2}}{2}(2 n+2) \\
& =(n+1)^{3} .
\end{aligned}
$$

Case 2: Unequal number of segments drawn from the two vertices, $\mathbf{n} \neq \mathbf{h}$. Now we consider the situation (Figure 4) when there are n line segments drawn from vertex B to side $A C$, and h line segments drawn from vertex C to side $A B$. Here it is assumed that $n \neq h$.

Very conveniently for us, the analysis for the general configuration runs on exactly the same lines as earlier. Thus, in place of the term $\binom{n+2}{2} \times(n+1)$ we have the term

$$
\binom{n+2}{2} \times\binom{ b+1}{1}
$$

Figure 4
and in place of the term $\binom{n+1}{2} \times\binom{ n+1}{1}$ we have the term

$$
\binom{h+1}{2} \times\binom{ n+1}{1} .
$$

Hence the total number of triangles in the configuration is

$$
\begin{aligned}
& \binom{n+2}{2} \times\binom{ h+1}{1}+\binom{h+1}{2} \times\binom{ n+1}{1} \\
& =\frac{(n+2)(n+1)(h+1)}{2}+\frac{(b+1) h(n+1)}{2} \\
& =\frac{(n+1)(h+1)}{2}(n+b+2) \\
& =\frac{(n+1)(b+1)(n+b+2)}{2} .
\end{aligned}
$$

Remarks.

- If we interchange values of n and h, we will get the same answers by using this formula. This seems logical, as the two configurations are mirror images of each other.
- If we put $n=h$, we get the formula derived earlier, i.e., $(n+1)^{3}$.

Open Question

Can you find the number of triangles when n, h and k line segments are drawn from the three vertices respectively to the opposite sides? We may assume for simplicity that no three of these $n+h+k$ line segments concur.

