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sThe Constants of 
Mathematics

SHAILESH SHIRALI Science is full of constants. Probably the best known
such constant is the velocity of light (c), made
famous by Einstein’s Special Theory of Relativity. (He

postulated that all observers measuring the velocity of light in
vacuum would obtain the same figure, regardless of their own
velocity.) Other such constants, slightly less famous, are
Planck’s constant (h), the gravitational constant (G) which
occurs in Newton’s law of universal gravitation, the charge of
the electron (e), the mass of the electron (me) and the mass of
the proton (mp). All these constants have units (so their
values depend on the system of measurement), but there are
also constants which are ‘dimensionless’. For example, we
have the ‘fine-structure constant’ α (also known as
Sommerfeld’s constant; it concerns the strength of the
electromagnetic interaction between elementary charged
particles) and constants like 3 (the number of independent
dimensions of space) and 2 (which occurs as the exponent in
so many force laws, e.g., Newton’s universal law of
gravitation).

In mathematics too, there are many constants. In one sense,
of course, every number is a constant! But as in human
society, in which all men are equal under the Constitution,
yet some are “more equal than others” (apologies to George
Orwell for this usage which is far removed from its original
usage in Animal Farm), so too with numbers. Nature seems
to have a particular love for some numbers, for they occur
repeatedly in mathematical results, often in the most
unexpected ways; numbers like π, e, γ and so on, and also
numbers like 1 and 2.
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In this series, we make a whimsical journey visiting some well-known constants of mathematics; along the
way we learn about their personalities, their peculiarities. In each case, we attempt to justify why
mathematicians consider the number to be mathematically significant and hence is worthy of being called
a ‘constant’.

Pythagoras’ constant: the square root of 2
We start with the number which has the honour of being the first one ever to be proved irrational: the
square root of 2. It has the dubious honour of being the chief participant in the first great crisis in
mathematics.

In what sense is
√

2 a mathematical constant? That is easy to see: the number is linked inextricably to the
square, which is a fundamental geometric object. All squares are similar to one another, and the ratio of
the diagonal to the side of any square is

√
2 (Figure 1). This follows from the theorem of Pythagoras,

which explains the name given to the constant.
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Figure 1. The ratio of diagonal to side, d/s, is the same for all squares: d/s =
√

2

As already stated, the constant
√

2 is notorious in being the first number shown to be irrational. This
discovery was made by the school of Pythagoras (probably in the fifth century BCE), but it was expressed
differently, thus: “The side and the diagonal of a square are not commensurable.” (This means that no
matter what unit of length we choose, it cannot fit a whole number of times into both the side and the
diagonal.) A discovery of this kind if made today would be the source of much excitement and pleasure.
But it appears that the discovery was not welcome to its discoverers! This will seem strange to us, but it has
to be understood with reference to the Pythagorean world view, in which the role of the counting numbers
was central. The word ‘rational’ may give us a clue to why this was so: nowadays, it is used to describe
numbers that can be written as the ratio of two integers, but additionally it has the connotation of ‘sane’,
‘orderly’, ‘logical’, and so on. The fact that the same word is used to describe these two different attributes
tells us that the Pythagorean view is still very much with us, so we continue to be Pythagoreans! This
perspective may help us appreciate why the discovery that

√
2 is not commensurable provoked such a

philosophic crisis, the first such in mathematics.

The Greeks were not the first to study the square root of 2. Earlier, the Babylonians studied it and had
found some remarkable approximation schemes which are of interest to us even today.

Irrational nature of the square root of 2
We give several different proofs; each is (naturally) a “proof by contradiction”. (Why ‘naturally’? Because
irrationality is essentially a negative concept; it asserts the lack of some characteristic, so there cannot be a
direct proof of irrationality.)
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Euclid’s proof. This is the proof given in Euclid’s Elements. It is perhaps the oldest formally articulated
proof of any proposition in mathematics. It rests on two simple observations: (i) The square of an even
integer is even. (ii) The square of an odd integer is odd. Here is the proof, expressed in modern algebraic
language.

Suppose that
√

2 = a/b where a, b are positive integers. We may suppose that a, b are coprime, for if they
do share a common factor, it can be ‘canceled’ from both the numbers, leaving the ratio a/b unchanged.
But this means, in particular: a and b cannot both be even. By squaring the relation

√
2 = a/b we get:

2 =
a2

b2 , ∴ a2 = 2b2, (1)

from which follow these statements, in sequence: a2 is even, hence a is even, hence a = 2c for some
positive integer c. These in turn lead to the following:

a2 = 4c2, ∴ 2b2 = 4c2, ∴ b2 = 2c2, (2)

from which follow these statements, in sequence: b2 is even, hence b is even. It thus transpires that both a
and b are even. But this contradicts what we said above: that a and b cannot both be even. We conclude
that the supposition made at the start has to be invalid, and hence that

√
2 is not rational. �

A proof by descent. Since the set N = {1, 2, 3, . . .} of positive integers is bounded below by 1, the
following deduction is valid: It is not possible to have an infinitely long, strictly decreasing sequence of positive
integers. (The two phrases ‘infinitely long’ and ‘strictly decreasing’ are crucial parts of this sentence.)

This may seem to be another of those ‘obviously true’ and trivial statements which cannot possibly yield
anything of significance; but in fact many beautiful proofs are based on it. They are known collectively as
proofs by descent. The proof we now offer, to show the irrationality of

√
2, is one such.

Suppose that a and b are positive integers such that a/b =
√

2. Then b
√

2 = a. Using this property we
define a set S as follows:

S = the set of all positive integers x such that x
√

2 is an integer. (3)

By definition, b lies in S; so S is non-empty. We shall now produce another positive integer which is
smaller than b and lies in S.

The number we have in mind is a− b. First, we show that it has the desired property. It is certainly
positive (for we have a/b > 1, hence a > b and a− b > 0), and it is an integer, since a and b are integers.
Now note that:

(a− b)
√

2 = a
√

2 − b
√

2 = (b
√

2) ·
√

2 − a = 2b− a. (4)

Hence a− b belongs to S. How can we be sure that a− b is smaller than b? Let b′ = a− b and
a′ = 2b− a; then a′/b′ =

√
2. Since a and b are integers, so are b′ and a′. Since a/b ≈ 1.4, it follows

that a > b but a < 2b, implying that b′ < b. Hence 0 < b′ < b. We have thus found a positive integer b′

which is smaller than b and lies in S.

This construction works with any integer in S. Thus we can find a positive integer b′′ which is smaller than
b′ and lies in S. And so on.

We thus obtain an infinitely long, strictly decreasing sequence of positive integers. But such a sequence
cannot exist!

Thus we have arrived at a contradiction. We conclude that the supposition made at the start (about the
existence of the integers a and b) is invalid, and hence that

√
2 is not rational. �
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Another route to the above proof is the following. Observe that if x2 = 2, then

2 − x = x2 − x, ∴ 2 − x = x(x− 1). (5)

Therefore, if x =
√

2 then:

x =
2 − x
x− 1

. (6)

Now suppose that
√

2 is a rational number. Let
√

2 = a/b where a, b are positive integers. Substituting
x = a/b in (??) we see that

a
b
=

2 − a/b
a/b− 1

=
2b− a
a− b

.

We have arrived at the same expression and the same numbers (a− b and 2b− a) as earlier.

Pictorial proof. This puts into an attractive, pictorial form the argument just presented. It starts with the
supposition that

√
2 = a/b where a and b are positive integers.

A B

CD

P

Q

R
• AB = b

• AC = a

• AP = b

• PC = a− b

• BQ = a− b

• CQ = 2b− a

Figure 2.

Figure 2 displays a square ABCD with side AB = b. Its diagonal AC has length b
√

2 = a. By drawing an
arc of a circle with radius b, centred at A, locate a point P on AC such that AP = b, and by drawing PQ
perpendicular to PC, construct a square CPQR on side CP, with Q on side CB. Join AQ. Since AP = b,
we have PC = a− b = PQ.

Now consider △APQ and △ABQ. They are RHS-congruent to each other, so BQ = PQ. It follows that
BQ = a− b, and hence that CQ = b− (a− b) = 2b− a. Since a, b are integers, so are a− b and
2b− a. So the lengths of the side and diagonal of square CPQR are positive integers.

Note what we have accomplished: starting with a square ABCD whose side and diagonal have integer
length, we have produced another square CPQR whose side and diagonal also have integer length.
Moreover, CPQR is strictly smaller than ABCD. (Compare their diagonals: CQ < CB and CB < CA,
therefore CQ < CA.)

The same construction starting with square CPQR will produce yet another square with integer side and
diagonal, even smaller than square CPQR. The logic of the construction is such that we can continue this
process forever. We thus get a shrinking sequence of integer-sided squares. This is clearly not possible —
we cannot have indefinitely small, integer-sided squares! So we reach a contradiction, like earlier, and we
conclude that we cannot construct such a configuration at all. Hence

√
2 is irrational. �
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Origami proof. The idea described above can be put in a pictorially attractive form in another way, using
ideas from origami. Figure 3 (i) shows an isosceles right-angled △PQR, right-angled at R. The bisector PS
of �QPR has been marked. In Figure 3 (ii), the triangle has been folded along the angle bisector PS; what
was originally △PSR has been folded upon △PST, with side PR lying upon side PT.

Now suppose that
√

2 is a rational number, say
√

2 = a/b where a and b are positive integers. In Figure 3,
choose the scale of the figure in such a manner that PR = b; then PQ = a. The sides of △PQR are b, b, a;
these are all integers. Therefore, △PQR is integer-sided, isosceles, and right-angled. In Figure 3 (ii),
PT = PR, hence PT = b and TQ = a− b. In △TQS, �TQS = 45◦ = �TSQ, hence TS = TQ, i.e.,
TS = a− b. Since △PSR ∼= △PST, we get SR = ST, i.e., SR = a− b; therefore
QS = b− (a− b) = 2b− a. So the sides of △TQS are a− b, a− b, 2b− a; these too are all integers.
Therefore, △TQS is integer-sided, isosceles, and right-angled.

P

Q RS

b
a

Angle
bisector

P

Q RS

T

b

b

a− b a− b

a− b2b− a

Before folding After folding
Figure 3.

Since △TQS lies within △PQR, the sides of TQS are strictly smaller than the corresponding sides of PQR.
Hence the existence of an integer-sided, isosceles, right-angled triangle has led to the existence of another
such triangle but with strictly smaller sides. The very same construction applied to this smaller triangle will
lead to the existence of yet another integer-sided, isosceles right-angled triangle.

This iterative step can be applied indefinitely, and we are forced to confront an infinite sequence of
shrinking integer-sided triangles. This is clearly not possible; the condition that the sides are positive
integers acts as an impassable barrier. Hence the initial assumption must be invalid; in other words,

√
2

cannot be a rational number. �

Computing the square root of 2
To find good decimal approximations for

√
2 we may use the well-known “long-division method”. But

rather than traverse this well-trodden path, we shall use a different approach for approximating the square
root of 2. It is very ‘low-tech’ in its requirements: all it needs is the expansion formula for (a− b)2.

We start with the easily verified fact that
√

2 lies between 1 and 2, and hence that:

0 <
√

2 − 1 < 1. (7)
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Let α =
√

2 − 1. Since α lies between 0 and 1, the same is true for the quantities α2, α3, α4, …; that is,
0 < αn < 1 for every positive integer n. Indeed, the larger the value of n, the closer the value of αn to 0.
This simple fact can be exploited to yield remarkably good approximations to α. Here’s how we proceed.
Squaring α using the binomial squaring formula, we get:

α2 =
(√

2 − 1
)2

= 2 − 2
√

2 + 1 = 3 − 2
√

2.

If we regard α2 as a small quantity, i.e., 3 − 2
√

2 ≈ 0, we get by division:
√

2 ≈ 3
2
. (8)

This is not a particularly good approximation, but it is noteworthy that we got it at all, and that too by
such simple reasoning. We can improve it by continuing the squaring process. We get the following
successively better approximations:

• α4 =
(
3 − 2

√
2
)2

= 9 − 12
√

2 + 8 = 17 − 12
√

2, hence:

√
2 ≈ 17

12
. (9)

This is much better!

• α8 =
(
17 − 12

√
2
)2

= 289 − 408
√

2 + 288 = 577 − 408
√

2, hence:

√
2 ≈ 577

408
. (10)

Even better ….

• α16 =
(
577 − 4082

√
2
)2

= 665857 − 470832
√

2, hence:

√
2 ≈ 665857

470832
. (11)

• α32 =
(
665857 − 470832

√
2
)2

= 886731088897 − 627013566048
√

2, hence:

√
2 ≈ 886731088897

627013566048
. (12)

It is worth examining how good these approximations are (each one necessarily yields an overestimate).
Table 1 displays the results; each value may be compared with the actual value of

√
2 given in the last row.

In just four steps, we have achieved close to twenty-five decimal place (d.p.) accuracy! That is indeed very
impressive.

Remarks. Before closing this section we make two remarks.

• From any fraction a/b which is close to
√

2, in the sense that |a− b
√

2| is a small quantity (close to 0;
in any case, smaller than 1 in absolute value), we can obtain a better one by squaring, thus:

(
a− b

√
2
)2

=
(
a2 + 2b2)− 2ab

√
2.

Hence the new approximation is (a2 + 2b2)÷ 2ab, which may be written as:
b
a
+

a
2b

. (13)
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Number Decimal expansion Error

17
12

1.41666 . . . 2 × 10−3

577
408

1.41421 5686 . . . 2 × 10−6

665857
470832

1.41421 35623 7468 . . . 3 × 10−12

886731088897
627013566048

1.41421 35623 73095 04880 16896 . . . 9 × 10−25

√
2 1.41421 35623 73095 04880 16887 . . .

Table 1. Rational approximations to
√

2

Example: From the approximation 7/5 = 1.4 (accurate to one d.p.) we get:

5
7
+

7
10

=
99
70

≈ 1.41428,

which is accurate to 4 d.p. And from this we get:

70
99

+
99
140

=
19601
13860

≈ 1.414213564,

which is accurate to 8 d.p. One more application yields 17 d.p. accuracy!

• The same logic can be used to get good rational approximations to numbers like
√

3,
√

5 and
√

7;
indeed, the square root of any rational number. But it will not work for cube roots, fifth roots, and so
on. (Why not?)

• Some of you may recognise in this scheme a low-tech version of the well-known Newton-Raphson
scheme for numerically solving arbitrary single variable equations.

Sightings of the square root of 2

A4 Paper. Did you know that the familiar A4-sized sheet of paper we use in printers and photocopiers
incorporates the magic number

√
2? The number

√
2 has the following property:

√
2 : 2 = 1 :

√
2.

Hence, if we take a rectangular sheet of paper whose length to width ratio is
√

2 : 1 and fold it in half
along its longer side, the folded sheet will have the same shape as the original one (it has the same
length-to-width ratio). This is just the property that defines A4-sized paper! (For, if a rectangular sheet
whose length to width ratio is x : 1 has such a property, then we must have x/2 : 1 = 1 : x. This equation
has only one solution, x =

√
2, as we must have x > 0. So there is only one such ratio which ‘works.’) If

we fold such a sheet in two, along the longer side, we get a A5-sized sheet, and if we fold that in two, we
get a A6-sized sheet. Similarly we have A3-sized paper which would yield A4-size if folded in half. The
length-to-width ratios are the same for all these sheets; namely,

√
2 : 1. See Figure 4.
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Figure 4. Paper sizes

…And a non-sighting of the square root of 2. The Boeing series of jet planes is well-known and their
model numbers have become part of our everyday lexicon: Boeing 707, Boeing 747 and so on. Their very
first model was the Boeing 707 and it has become part of folklore that it was so named because the angle
between the wings and the body is 45◦ and, as is well-known, sin 45◦ = 1/

√
2 ≈ 0.707.

But this ancient wisdom has been debunked! In actual fact, the wingsweep angle of a Boeing 707 is 35◦,
not 45◦. The actual reason behind the name is more pedestrian; see [1].

12 SHAILESH SHIRALI

But this ancient wisdom has been debunked! In actual fact, the wingsweep angle of a

Boeing 707 is 35 , not 45 . The actual reason behind the name is more pedestrian; see [ ].

IGURE 5. A Boeing 707; photo credit: https://www.boeing.com/

history/products/707.page

O CONCLUDE TWO BEAUTIFUL FORMULAS . . .

We conclude by displaying a couple of extremely beautiful expressions for the square

root of 2.

A formula found by Euler (1707–1783). The first expression was found by the great

Leonhard Euler. Try to prove it for yourself!

35 99 195
×·· · (14)

The denominators in the fractions are

35 99 11 195 13 15, . . . .

A formula found by Francois Viète (1540–1603). The second expression is an amazing

and beautiful formula connecting 2 and

· · · (15)

Figure 5. A Boeing 707; photo credit: https://www.boeing.com/history/products/707.page

To conclude, two beautiful formulas …
We conclude by displaying a couple of extremely beautiful expressions for the square root of 2.
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A formula found by Euler (1707–1783). The first expression was found by the great Leonhard Euler. Try
to prove it for yourself!

√
2 =

(
1 +

1
3

)
×

(
1 +

1
35

)
×

(
1 +

1
99

)
×

(
1 +

1
195

)
× · · · . (14)

The denominators in the fractions are

3 = 1 × 3, 35 = 5 × 7, 99 = 9 × 11, 195 = 13 × 15, . . . .

A formula found by Francois Viète (1540–1603). The second expression is an amazing and beautiful
formula connecting

√
2 and π:

2
π

=

√
2

2
·
√

2 +
√

2
2

·

√
2 +

√
2 +

√
2

2
·

√
2 +

√
2 +

√
2 +

√
2

2
· · · (15)

Try proving this for yourself. It is not too difficult! All you need is the following pair of results:

sin 2x = 2 · sin x cos x, cos x =
√

1 + cos 2x
2

.

Closing remark. We have seen a few occurrences of
√

2 in this brief article. There are many, many more
such sightings of this number in the world of mathematics but we shall leave the task of uncovering them
to you.
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